MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern30-04
degree-four model for low autocorrelated binary sequences
This instance arises in theoretical physics. Determining a ground
state in the so-called Bernasconi model amounts to minimizing a
degree-four energy function over variables taking values in
{+1,-1}. Here, the energy function is expressed in 0/1 variables. The
model contains symmetries, leading to multiple optimum solutions.
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -324.00000030 (ANTIGONE) -324.00000030 (BARON) -324.00000000 (COUENNE) -324.00000000 (LINDO) -324.00000000 (PQCR) -324.00000000 (SCIP) -324.00000000 (SHOT) |
| Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
| Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.30.4 |
| Applicationⓘ | Autocorrelated Sequences |
| Added to libraryⓘ | 26 Feb 2014 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 31 |
| #Binary Variablesⓘ | 30 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 30 |
| #Nonlinear Binary Variablesⓘ | 30 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 1 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 31 |
| #Nonlinear Nonzeros in Jacobianⓘ | 30 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 168 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 30 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 30 |
| Average blocksize in Hessian of Lagrangianⓘ | 30.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 6.4000e+01 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 0 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 31 1 30 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 31 1 30 0
*
* Solve m using MINLP minimizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30;
Equations e1;
e1.. 64*b1*b2*b3*b4 + 64*b2*b3*b4*b5 + 64*b3*b4*b5*b6 + 64*b4*b5*b6*b7 + 64*b5*
b6*b7*b8 + 64*b6*b7*b8*b9 + 64*b7*b8*b9*b10 + 64*b8*b9*b10*b11 + 64*b9*b10
*b11*b12 + 64*b10*b11*b12*b13 + 64*b11*b12*b13*b14 + 64*b12*b13*b14*b15 +
64*b13*b14*b15*b16 + 64*b14*b15*b16*b17 + 64*b15*b16*b17*b18 + 64*b16*b17*
b18*b19 + 64*b17*b18*b19*b20 + 64*b18*b19*b20*b21 + 64*b19*b20*b21*b22 +
64*b20*b21*b22*b23 + 64*b21*b22*b23*b24 + 64*b22*b23*b24*b25 + 64*b23*b24*
b25*b26 + 64*b24*b25*b26*b27 + 64*b25*b26*b27*b28 + 64*b26*b27*b28*b29 +
64*b27*b28*b29*b30 - 32*b1*b2*b3 - 32*b1*b2*b4 - 32*b1*b3*b4 - 64*b2*b3*b4
- 32*b2*b3*b5 - 32*b2*b4*b5 - 64*b3*b4*b5 - 32*b3*b4*b6 - 32*b3*b5*b6 -
64*b4*b5*b6 - 32*b4*b5*b7 - 32*b4*b6*b7 - 64*b5*b6*b7 - 32*b5*b6*b8 - 32*
b5*b7*b8 - 64*b6*b7*b8 - 32*b6*b7*b9 - 32*b6*b8*b9 - 64*b7*b8*b9 - 32*b7*
b8*b10 - 32*b7*b9*b10 - 64*b8*b9*b10 - 32*b8*b9*b11 - 32*b8*b10*b11 - 64*
b9*b10*b11 - 32*b9*b10*b12 - 32*b9*b11*b12 - 64*b10*b11*b12 - 32*b10*b11*
b13 - 32*b10*b12*b13 - 64*b11*b12*b13 - 32*b11*b12*b14 - 32*b11*b13*b14 -
64*b12*b13*b14 - 32*b12*b13*b15 - 32*b12*b14*b15 - 64*b13*b14*b15 - 32*b13
*b14*b16 - 32*b13*b15*b16 - 64*b14*b15*b16 - 32*b14*b15*b17 - 32*b14*b16*
b17 - 64*b15*b16*b17 - 32*b15*b16*b18 - 32*b15*b17*b18 - 64*b16*b17*b18 -
32*b16*b17*b19 - 32*b16*b18*b19 - 64*b17*b18*b19 - 32*b17*b18*b20 - 32*b17
*b19*b20 - 64*b18*b19*b20 - 32*b18*b19*b21 - 32*b18*b20*b21 - 64*b19*b20*
b21 - 32*b19*b20*b22 - 32*b19*b21*b22 - 64*b20*b21*b22 - 32*b20*b21*b23 -
32*b20*b22*b23 - 64*b21*b22*b23 - 32*b21*b22*b24 - 32*b21*b23*b24 - 64*b22
*b23*b24 - 32*b22*b23*b25 - 32*b22*b24*b25 - 64*b23*b24*b25 - 32*b23*b24*
b26 - 32*b23*b25*b26 - 64*b24*b25*b26 - 32*b24*b25*b27 - 32*b24*b26*b27 -
64*b25*b26*b27 - 32*b25*b26*b28 - 32*b25*b27*b28 - 64*b26*b27*b28 - 32*b26
*b27*b29 - 32*b26*b28*b29 - 64*b27*b28*b29 - 32*b27*b28*b30 - 32*b27*b29*
b30 - 32*b28*b29*b30 + 16*b1*b2 + 24*b1*b3 + 16*b1*b4 + 32*b2*b3 + 48*b2*
b4 + 16*b2*b5 + 48*b3*b4 + 48*b3*b5 + 16*b3*b6 + 48*b4*b5 + 48*b4*b6 + 16*
b4*b7 + 48*b5*b6 + 48*b5*b7 + 16*b5*b8 + 48*b6*b7 + 48*b6*b8 + 16*b6*b9 +
48*b7*b8 + 48*b7*b9 + 16*b7*b10 + 48*b8*b9 + 48*b8*b10 + 16*b8*b11 + 48*b9
*b10 + 48*b9*b11 + 16*b9*b12 + 48*b10*b11 + 48*b10*b12 + 16*b10*b13 + 48*
b11*b12 + 48*b11*b13 + 16*b11*b14 + 48*b12*b13 + 48*b12*b14 + 16*b12*b15
+ 48*b13*b14 + 48*b13*b15 + 16*b13*b16 + 48*b14*b15 + 48*b14*b16 + 16*b14
*b17 + 48*b15*b16 + 48*b15*b17 + 16*b15*b18 + 48*b16*b17 + 48*b16*b18 + 16
*b16*b19 + 48*b17*b18 + 48*b17*b19 + 16*b17*b20 + 48*b18*b19 + 48*b18*b20
+ 16*b18*b21 + 48*b19*b20 + 48*b19*b21 + 16*b19*b22 + 48*b20*b21 + 48*b20
*b22 + 16*b20*b23 + 48*b21*b22 + 48*b21*b23 + 16*b21*b24 + 48*b22*b23 + 48
*b22*b24 + 16*b22*b25 + 48*b23*b24 + 48*b23*b25 + 16*b23*b26 + 48*b24*b25
+ 48*b24*b26 + 16*b24*b27 + 48*b25*b26 + 48*b25*b27 + 16*b25*b28 + 48*b26
*b27 + 48*b26*b28 + 16*b26*b29 + 48*b27*b28 + 48*b27*b29 + 16*b27*b30 + 32
*b28*b29 + 24*b28*b30 + 16*b29*b30 - 12*b1 - 24*b2 - 36*b3 - 48*b4 - 48*b5
- 48*b6 - 48*b7 - 48*b8 - 48*b9 - 48*b10 - 48*b11 - 48*b12 - 48*b13 - 48*
b14 - 48*b15 - 48*b16 - 48*b17 - 48*b18 - 48*b19 - 48*b20 - 48*b21 - 48*
b22 - 48*b23 - 48*b24 - 48*b25 - 48*b26 - 48*b27 - 36*b28 - 24*b29 - 12*
b30 - objvar =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

