MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ball_mk2_10
A simple MINLP with a feasible set described by a ball. The basic model over which these variations are made is: min sum_i=1^n x_i s.t. sum_i=1^n (x_i - 0.5)^2 <= (n-1)/4 x integer between -1 and 1. Obvisouly, this problem is infeasible and has no solution. It can be shown that any outer-approximation based method will need 2^n linear inequalities to show infeasibility, see reference. In this instance, the ball is slightly moved to contain the point 0.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.00000000 (ALPHAECP) -0.00000000 (ANTIGONE) 0.00000000 (BARON) 0.00000000 (BONMIN) 0.00000000 (COUENNE) -0.00000000 (CPLEX) 0.00000000 (GUROBI) 0.00000000 (LINDO) 0.00000000 (SCIP) -0.00000000 (SHOT) |
| Referencesⓘ | Hijazi, Hassan, Bonami, Pierre, and Ouorou, Adam, An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs, INFORMS Journal on Computing, 26:1, 2014, 31-44. |
| Sourceⓘ | Pierre Bonami |
| Applicationⓘ | Geometry |
| Added to libraryⓘ | 11 Sep 2017 |
| Problem typeⓘ | IQCP |
| #Variablesⓘ | 10 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 10 |
| #Nonlinear Variablesⓘ | 10 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 10 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 10 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 10 |
| #Nonlinear Nonzeros in Jacobianⓘ | 10 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
| #Blocks in Hessian of Lagrangianⓘ | 10 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 9.8742e-01 |
| Maximal coefficientⓘ | 1.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 2 1 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 11 1 0 10 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 21 11 10 0
*
* Solve m using MINLP minimizing objvar;
Variables objvar,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11;
Integer Variables i2,i3,i4,i5,i6,i7,i8,i9,i10,i11;
Equations e1,e2;
e1.. objvar + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 =E= 0;
e2.. sqr(i10) - 0.987420882906575*i10 + sqr(i9) - 0.987420882906575*i9 + sqr(i8
) - 0.987420882906575*i8 + sqr(i7) - 0.987420882906575*i7 + sqr(i6) -
0.987420882906575*i6 + sqr(i5) - 0.987420882906575*i5 + sqr(i4) -
0.987420882906575*i4 + sqr(i3) - 0.987420882906575*i3 + sqr(i2) -
0.987420882906575*i2 + sqr(i11) - 0.987420882906575*i11 =L= 0;
* set non-default bounds
i2.lo = -1; i2.up = 1;
i3.lo = -1; i3.up = 1;
i4.lo = -1; i4.up = 1;
i5.lo = -1; i5.up = 1;
i6.lo = -1; i6.up = 1;
i7.lo = -1; i7.up = 1;
i8.lo = -1; i8.up = 1;
i9.lo = -1; i9.up = 1;
i10.lo = -1; i10.up = 1;
i11.lo = -1; i11.up = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

