MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ball_mk3_30
A simple MINLP with a feasible set described by a ball. The basic model over which these variations are made is: min sum_i=1^n x_i s.t. sum_i=1^n (x_i - 0.5)^2 <= (n-1)/4 x integer between -1 and 1. Obvisouly, this problem is infeasible and has no solution. It can be shown that any outer-approximation based method will need 2^n linear inequalities to show infeasibility, see reference. In this instance, the ball is an empty ellipse, but the quadratic form is still diagonal.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -32.38870966 (ALPHAECP) inf (ANTIGONE) -24.00000000 (BARON) -26.18503375 (BONMIN) inf (COUENNE) inf (CPLEX) inf (GUROBI) inf (LINDO) inf (SCIP) inf (SHOT) |
| Referencesⓘ | Hijazi, Hassan, Bonami, Pierre, and Ouorou, Adam, An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs, INFORMS Journal on Computing, 26:1, 2014, 31-44. |
| Sourceⓘ | Pierre Bonami |
| Applicationⓘ | Geometry |
| Added to libraryⓘ | 11 Sep 2017 |
| Problem typeⓘ | IQCP |
| #Variablesⓘ | 30 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 30 |
| #Nonlinear Variablesⓘ | 30 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 30 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 30 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 30 |
| #Nonlinear Nonzeros in Jacobianⓘ | 30 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 30 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 30 |
| #Blocks in Hessian of Lagrangianⓘ | 30 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 6.2539e-03 |
| Maximal coefficientⓘ | 1.0000e+00 |
| Infeasibility of initial pointⓘ | 0.0001 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 2 1 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 31 1 0 30 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 61 31 30 0
*
* Solve m using MINLP minimizing objvar;
Variables objvar,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18
,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31;
Integer Variables i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18
,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31;
Equations e1,e2;
e1.. objvar + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13
+ i14 + i15 + i16 + i17 + i18 + i19 + i20 + i21 + i22 + i23 + i24 + i25
+ i26 + i27 + i28 + i29 + i30 + i31 =E= 0;
e2.. 0.0394468602581308*sqr(i30) - 0.0394468602581308*i30 + 0.016482781963216*
sqr(i29) - 0.016482781963216*i29 + 0.0565703047972114*sqr(i28) -
0.0565703047972114*i28 + 0.0585014464120386*sqr(i27) - 0.0585014464120386*
i27 + 0.0118746308986698*sqr(i26) - 0.0118746308986698*i26 +
0.0451913403894453*sqr(i25) - 0.0451913403894453*i25 + 0.0362882980369683*
sqr(i24) - 0.0362882980369683*i24 + 0.0204948265573191*sqr(i23) -
0.0204948265573191*i23 + 0.0252301288903778*sqr(i22) - 0.0252301288903778*
i22 + 0.0283867992035166*sqr(i21) - 0.0283867992035166*i21 +
0.0425137327561133*sqr(i20) - 0.0425137327561133*i20 + 0.037617677558166*
sqr(i19) - 0.037617677558166*i19 + 0.0576726558598861*sqr(i18) -
0.0576726558598861*i18 + 0.0259924550955063*sqr(i17) - 0.0259924550955063*
i17 + 0.00625392202854311*sqr(i16) - 0.00625392202854311*i16 +
0.0474635696658564*sqr(i15) - 0.0474635696658564*i15 + 0.030733721879364*
sqr(i14) - 0.030733721879364*i14 + 0.015401148979499*sqr(i13) -
0.015401148979499*i13 + 0.049224183717334*sqr(i12) - 0.049224183717334*i12
+ 0.0519656343340015*sqr(i11) - 0.0519656343340015*i11 +
0.0384040110374736*sqr(i10) - 0.0384040110374736*i10 + 0.0172067356549738*
sqr(i9) - 0.0172067356549738*i9 + 0.019974781798624*sqr(i8) -
0.019974781798624*i8 + 0.0352372440378746*sqr(i7) - 0.0352372440378746*i7
+ 0.0152163994975552*sqr(i6) - 0.0152163994975552*i6 + 0.0075711399569244
*sqr(i5) - 0.0075711399569244*i5 + 0.0243048911732161*sqr(i4) -
0.0243048911732161*i4 + 0.0502208123501935*sqr(i3) - 0.0502208123501935*i3
+ 0.041161312091797*sqr(i2) - 0.041161312091797*i2 + 0.0473965531202045*
sqr(i31) - 0.0473965531202045*i31 =L= -9.99999999999612E-5;
* set non-default bounds
i2.lo = -1; i2.up = 2;
i3.lo = -1; i3.up = 2;
i4.lo = -1; i4.up = 2;
i5.lo = -1; i5.up = 2;
i6.lo = -1; i6.up = 2;
i7.lo = -1; i7.up = 2;
i8.lo = -1; i8.up = 2;
i9.lo = -1; i9.up = 2;
i10.lo = -1; i10.up = 2;
i11.lo = -1; i11.up = 2;
i12.lo = -1; i12.up = 2;
i13.lo = -1; i13.up = 2;
i14.lo = -1; i14.up = 2;
i15.lo = -1; i15.up = 2;
i16.lo = -1; i16.up = 2;
i17.lo = -1; i17.up = 2;
i18.lo = -1; i18.up = 2;
i19.lo = -1; i19.up = 2;
i20.lo = -1; i20.up = 2;
i21.lo = -1; i21.up = 2;
i22.lo = -1; i22.up = 2;
i23.lo = -1; i23.up = 2;
i24.lo = -1; i24.up = 2;
i25.lo = -1; i25.up = 2;
i26.lo = -1; i26.up = 2;
i27.lo = -1; i27.up = 2;
i28.lo = -1; i28.up = 2;
i29.lo = -1; i29.up = 2;
i30.lo = -1; i30.up = 2;
i31.lo = -1; i31.up = 2;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

