MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ball_mk4_15
A simple MINLP with a feasible set described by a ball. The basic model over which these variations are made is: min sum_i=1^n x_i s.t. sum_i=1^n (x_i - 0.5)^2 <= (n-1)/4 x integer between -1 and 1. Obvisouly, this problem is infeasible and has no solution. It can be shown that any outer-approximation based method will need 2^n linear inequalities to show infeasibility, see reference. In this instance, the ball is an empty ellipse and the quadratic form is not diagonal.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -72.51527744 (ALPHAECP) 2.99708480 (ANTIGONE) 226.00000000 (BARON) 58.82885900 (BONMIN) -40992.00000000 (COUENNE) inf (CPLEX) -15.00000000 (GUROBI) 0.00000000 (LINDO) 34.72419622 (SCIP) 33.78975348 (XPRESS) |
| Referencesⓘ | Hijazi, Hassan, Bonami, Pierre, and Ouorou, Adam, An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs, INFORMS Journal on Computing, 26:1, 2014, 31-44. |
| Sourceⓘ | Pierre Bonami |
| Applicationⓘ | Geometry |
| Added to libraryⓘ | 11 Sep 2017 |
| Problem typeⓘ | IQCP |
| #Variablesⓘ | 30 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 30 |
| #Nonlinear Variablesⓘ | 30 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 30 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 30 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 30 |
| #Nonlinear Nonzeros in Jacobianⓘ | 30 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 60 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 30 |
| #Blocks in Hessian of Lagrangianⓘ | 15 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
| Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 1.0000e+02 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 2 1 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 31 1 0 30 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 61 31 30 0
*
* Solve m using MINLP minimizing objvar;
Variables objvar,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18
,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31;
Integer Variables i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18
,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31;
Equations e1,e2;
e1.. objvar - 29*i2 - 28*i3 - 27*i4 - 26*i5 - 25*i6 - 24*i7 - 23*i8 - 22*i9
- 21*i10 - 20*i11 - 19*i12 - 18*i13 - 17*i14 - 16*i15 - 15*i16 - 14*i17
- 13*i18 - 12*i19 - 11*i20 - 10*i21 - 9*i22 - 8*i23 - 7*i24 - 6*i25
- 5*i26 - 4*i27 - 3*i28 - 2*i29 - i30 - 30*i31 =E= 0;
e2.. 100*sqr(i30) - 98*i30 + 100*sqr(i29) - 98*i29 + 100*sqr(i28) - 98*i28 +
100*sqr(i27) - 98*i27 + 100*sqr(i26) - 98*i26 + 100*sqr(i25) - 98*i25 +
100*sqr(i24) - 98*i24 + 100*sqr(i23) - 98*i23 + 100*sqr(i22) - 98*i22 +
100*sqr(i21) - 98*i21 + 100*sqr(i20) - 98*i20 + 100*sqr(i19) - 98*i19 +
100*sqr(i18) - 98*i18 + 100*sqr(i17) - 98*i17 + 100*sqr(i16) - 98*i16 +
100*sqr(i15) - 98*i15 + 100*sqr(i14) - 98*i14 + 100*sqr(i13) - 98*i13 +
100*sqr(i12) - 98*i12 + 100*sqr(i11) - 98*i11 + 100*sqr(i10) - 98*i10 +
100*sqr(i9) - 98*i9 + 100*sqr(i8) - 98*i8 + 100*sqr(i7) - 98*i7 + 100*sqr(
i6) - 98*i6 + 100*sqr(i5) - 98*i5 + 100*sqr(i4) - 98*i4 + 100*sqr(i3) - 98
*i3 + 100*sqr(i2) - 98*i2 + 100*sqr(i31) - 98*i31 - 2*i30*i29 - 2*i30*i29
- 2*i28*i27 - 2*i28*i27 - 2*i26*i25 - 2*i26*i25 - 2*i24*i23 - 2*i24*i23
- 2*i22*i21 - 2*i22*i21 - 2*i20*i19 - 2*i20*i19 - 2*i18*i17 - 2*i18*i17
- 2*i16*i15 - 2*i16*i15 - 2*i14*i13 - 2*i14*i13 - 2*i12*i11 - 2*i12*i11
- 2*i10*i9 - 2*i10*i9 - 2*i8*i7 - 2*i8*i7 - 2*i6*i5 - 2*i6*i5 - 2*i4*i3
- 2*i4*i3 - 2*i2*i31 - 2*i2*i31 =L= -1;
* set non-default bounds
i2.lo = -100;
i3.lo = -100;
i4.lo = -100;
i5.lo = -100;
i6.lo = -100;
i7.lo = -100;
i8.lo = -100;
i9.lo = -100;
i10.lo = -100;
i11.lo = -100;
i12.lo = -100;
i13.lo = -100;
i14.lo = -100;
i15.lo = -100;
i16.lo = -100;
i17.lo = -100;
i18.lo = -100;
i19.lo = -100;
i20.lo = -100;
i21.lo = -100;
i22.lo = -100;
i23.lo = -100;
i24.lo = -100;
i25.lo = -100;
i26.lo = -100;
i27.lo = -100;
i28.lo = -100;
i29.lo = -100;
i30.lo = -100;
i31.lo = -100;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if gamsversion 242 option intvarup = 0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

