MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: csched2a

Corrected version of csched2.
The printed version of the paper had some data inconsistencies.
The objective of the models also has been reformulated.
Formats ams gms mod nl osil
Primal Bounds
-160037.70130000 p1 ( gdx sol )
(infeas: 6e-10)
-165398.70130000 p2 ( gdx sol )
(infeas: 7e-12)
Dual Bounds
-527723.11250000 (ANTIGONE)
-165398.70130000 (BARON)
-1763030.63900000 (COUENNE)
-4960890.00000000 (LINDO)
-12329190.78000000 (SCIP)
References And, Vipul J and Grossmann, I E, Cyclic Scheduling of Continuous Parallel Units with Decaying Performance, American Institute of Chemical Engineers Journal, 44:7, 1998, 1623-1636.
Source modified MacMINLP model c-sched.mod with c-sched2.dat, GAMS Model Library model csched
Application Cyclic Scheduling of Continuous Parallel Units
Added to library 14 Jun 2007
Problem type MBNLP
#Variables 232
#Binary Variables 140
#Integer Variables 0
#Nonlinear Variables 57
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature indefinite
#Nonzeros in Objective 57
#Nonlinear Nonzeros in Objective 57
#Constraints 137
#Linear Constraints 137
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions mul div exp
Constraints curvature linear
#Nonzeros in Jacobian 564
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 225
#Nonzeros in Diagonal of Hessian of Lagrangian 57
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 57
Maximal blocksize in Hessian of Lagrangian 57
Average blocksize in Hessian of Lagrangian 57.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 6e+04
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        138       92        7       39        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        233       93      140        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        622      565       57        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
          ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
          ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
          ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
          ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
          ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
          ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207
          ,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220
          ,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x57,x58,x59,x60,x61,x62
          ,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79
          ,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92;

Binary Variables  b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103,b104,b105
          ,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116,b117,b118
          ,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131
          ,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142,b143,b144
          ,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155,b156,b157
          ,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168,b169,b170
          ,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181,b182,b183
          ,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194,b195,b196
          ,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207,b208,b209
          ,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220,b221,b222
          ,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138;


e1.. ((479700 - 479700*exp(-0.1*x1/x29))*x29 + 31980*x1 - 100*x29 + (252000 - 
     252000*exp(-0.2*x2/x30))*x30 + 22680*x2 - 90*x30 + (423500 - 423500*exp(-
     0.1*x3/x31))*x31 + 25410*x3 - 80*x31 + (157440 - 157440*exp(-0.2*x4/x32))*
     x32 + 19680*x4 - 75*x32 + (172108.695652174 - 172108.695652174*exp(-0.23*
     x5/x33))*x33 + 40950*x5 - 90*x33 + (33970.5882352941 - 33970.5882352941*
     exp(-0.34*x6/x34))*x34 + 8580*x6 - 93*x34 + (130200 - 130200*exp(-0.2*x7/
     x35))*x35 + 13440*x7 - 78*x35 + (200640 - 200640*exp(-0.2*x8/x36))*x36 + 
     26334*x8 - 80*x36 + (526680 - 526680*exp(-0.1*x9/x37))*x37 + 26334*x9 - 85
     *x37 + (212850 - 212850*exp(-0.2*x10/x38))*x38 + 29670*x10 - 75*x38 + (
     141360 - 141360*exp(-0.25*x11/x39))*x39 + 28500*x11 - 90*x39 + (
     152937.931034483 - 152937.931034483*exp(-0.29*x12/x40))*x40 + 49104*x12 - 
     94*x40 + (76444.4444444444 - 76444.4444444444*exp(-0.27*x13/x41))*x41 + 
     13932*x13 - 78*x41 + (76840 - 76840*exp(-0.3*x14/x42))*x42 + 11526*x14 - 
     70*x42 + (102300 - 102300*exp(-0.3*x15/x43))*x43 + 18810*x15 - 90*x43 + (
     170800 - 170800*exp(-0.2*x16/x44))*x44 + 17568*x16 - 90*x44 + (115200 - 
     115200*exp(-0.3*x17/x45))*x45 + 20160*x17 - 90*x45 + (176000 - 176000*exp(
     -0.27*x18/x46))*x46 + 30360*x18 - 85*x46 + (126357.142857143 - 
     126357.142857143*exp(-0.28*x19/x47))*x47 + 36600*x19 - 93*x47 + (
     45931.0344827586 - 45931.0344827586*exp(-0.29*x20/x48))*x48 + 9000*x20 - 
     92*x48 + (123318 - 123318*exp(-0.25*x21/x49))*x49 + 17901*x21 - 75*x49 + (
     223200 - 223200*exp(-0.2*x22/x50))*x50 + 28800*x22 - 80*x50 + (225000 - 
     225000*exp(-0.2*x23/x51))*x51 + 23750*x23 - 90*x51 + (240800 - 240800*exp(
     -0.15*x24/x52))*x52 + 21672*x24 - 85*x52 + (115920 - 115920*exp(-0.25*x25/
     x53))*x53 + 19320*x25 - 80*x53 + (133241.379310345 - 133241.379310345*exp(
     -0.29*x26/x54))*x54 + 42780*x26 - 92*x54 + (90763.6363636364 - 
     90763.6363636364*exp(-0.22*x27/x55))*x55 + 13312*x27 - 85*x55 + (
     78857.1428571429 - 78857.1428571429*exp(-0.28*x28/x56))*x56 + 11730*x28 - 
     72*x56)/x92 + objvar =E= 0;

e2..  - 1300*x1 - 1100*x8 - 900*x15 - 1200*x22 + x57 + 300*x92 =E= 0;

e3..  - 1200*x2 - 1050*x9 - 800*x16 - 1000*x23 + x58 + 400*x92 =E= 0;

e4..  - 1100*x3 - 1000*x10 - 800*x17 - 800*x24 + x59 + 300*x92 =E= 0;

e5..  - 800*x4 - 1000*x11 - 1200*x18 - 700*x25 + x60 + 500*x92 =E= 0;

e6..  - 1300*x5 - 1200*x12 - 1000*x19 - 1200*x26 + x61 + 500*x92 =E= 0;

e7..  - 300*x6 - 400*x13 - 300*x20 - 400*x27 + x62 + 100*x92 =E= 0;

e8..  - 700*x7 - 600*x14 - 850*x21 - 600*x28 + x63 + 600*x92 =E= 0;

e9..    x57 - 300*x92 =L= 0;

e10..    x58 - 300*x92 =L= 0;

e11..    x59 - 300*x92 =L= 0;

e12..    x60 - 300*x92 =L= 0;

e13..    x61 - 300*x92 =L= 0;

e14..    x62 - 300*x92 =L= 0;

e15..    x63 - 300*x92 =L= 0;

e16..    x29 - 0.01*b93 - b94 - 2*b95 - 3*b96 - 4*b97 =E= 0;

e17..    x30 - 0.01*b98 - b99 - 2*b100 - 3*b101 - 4*b102 =E= 0;

e18..    x31 - 0.01*b103 - b104 - 2*b105 - 3*b106 - 4*b107 =E= 0;

e19..    x32 - 0.01*b108 - b109 - 2*b110 - 3*b111 - 4*b112 =E= 0;

e20..    x33 - 0.01*b113 - b114 - 2*b115 - 3*b116 - 4*b117 =E= 0;

e21..    x34 - 0.01*b118 - b119 - 2*b120 - 3*b121 - 4*b122 =E= 0;

e22..    x35 - 0.01*b123 - b124 - 2*b125 - 3*b126 - 4*b127 =E= 0;

e23..    x36 - 0.01*b128 - b129 - 2*b130 - 3*b131 - 4*b132 =E= 0;

e24..    x37 - 0.01*b133 - b134 - 2*b135 - 3*b136 - 4*b137 =E= 0;

e25..    x38 - 0.01*b138 - b139 - 2*b140 - 3*b141 - 4*b142 =E= 0;

e26..    x39 - 0.01*b143 - b144 - 2*b145 - 3*b146 - 4*b147 =E= 0;

e27..    x40 - 0.01*b148 - b149 - 2*b150 - 3*b151 - 4*b152 =E= 0;

e28..    x41 - 0.01*b153 - b154 - 2*b155 - 3*b156 - 4*b157 =E= 0;

e29..    x42 - 0.01*b158 - b159 - 2*b160 - 3*b161 - 4*b162 =E= 0;

e30..    x43 - 0.01*b163 - b164 - 2*b165 - 3*b166 - 4*b167 =E= 0;

e31..    x44 - 0.01*b168 - b169 - 2*b170 - 3*b171 - 4*b172 =E= 0;

e32..    x45 - 0.01*b173 - b174 - 2*b175 - 3*b176 - 4*b177 =E= 0;

e33..    x46 - 0.01*b178 - b179 - 2*b180 - 3*b181 - 4*b182 =E= 0;

e34..    x47 - 0.01*b183 - b184 - 2*b185 - 3*b186 - 4*b187 =E= 0;

e35..    x48 - 0.01*b188 - b189 - 2*b190 - 3*b191 - 4*b192 =E= 0;

e36..    x49 - 0.01*b193 - b194 - 2*b195 - 3*b196 - 4*b197 =E= 0;

e37..    x50 - 0.01*b198 - b199 - 2*b200 - 3*b201 - 4*b202 =E= 0;

e38..    x51 - 0.01*b203 - b204 - 2*b205 - 3*b206 - 4*b207 =E= 0;

e39..    x52 - 0.01*b208 - b209 - 2*b210 - 3*b211 - 4*b212 =E= 0;

e40..    x53 - 0.01*b213 - b214 - 2*b215 - 3*b216 - 4*b217 =E= 0;

e41..    x54 - 0.01*b218 - b219 - 2*b220 - 3*b221 - 4*b222 =E= 0;

e42..    x55 - 0.01*b223 - b224 - 2*b225 - 3*b226 - 4*b227 =E= 0;

e43..    x56 - 0.01*b228 - b229 - 2*b230 - 3*b231 - 4*b232 =E= 0;

e44..  - b93 - b94 - b95 - b96 - b97 =E= -1;

e45..  - b98 - b99 - b100 - b101 - b102 =E= -1;

e46..  - b103 - b104 - b105 - b106 - b107 =E= -1;

e47..  - b108 - b109 - b110 - b111 - b112 =E= -1;

e48..  - b113 - b114 - b115 - b116 - b117 =E= -1;

e49..  - b118 - b119 - b120 - b121 - b122 =E= -1;

e50..  - b123 - b124 - b125 - b126 - b127 =E= -1;

e51..  - b128 - b129 - b130 - b131 - b132 =E= -1;

e52..  - b133 - b134 - b135 - b136 - b137 =E= -1;

e53..  - b138 - b139 - b140 - b141 - b142 =E= -1;

e54..  - b143 - b144 - b145 - b146 - b147 =E= -1;

e55..  - b148 - b149 - b150 - b151 - b152 =E= -1;

e56..  - b153 - b154 - b155 - b156 - b157 =E= -1;

e57..  - b158 - b159 - b160 - b161 - b162 =E= -1;

e58..  - b163 - b164 - b165 - b166 - b167 =E= -1;

e59..  - b168 - b169 - b170 - b171 - b172 =E= -1;

e60..  - b173 - b174 - b175 - b176 - b177 =E= -1;

e61..  - b178 - b179 - b180 - b181 - b182 =E= -1;

e62..  - b183 - b184 - b185 - b186 - b187 =E= -1;

e63..  - b188 - b189 - b190 - b191 - b192 =E= -1;

e64..  - b193 - b194 - b195 - b196 - b197 =E= -1;

e65..  - b198 - b199 - b200 - b201 - b202 =E= -1;

e66..  - b203 - b204 - b205 - b206 - b207 =E= -1;

e67..  - b208 - b209 - b210 - b211 - b212 =E= -1;

e68..  - b213 - b214 - b215 - b216 - b217 =E= -1;

e69..  - b218 - b219 - b220 - b221 - b222 =E= -1;

e70..  - b223 - b224 - b225 - b226 - b227 =E= -1;

e71..  - b228 - b229 - b230 - b231 - b232 =E= -1;

e72..  - x1 - 2*x29 + x64 =E= 0;

e73..  - x2 - 3*x30 + x65 =E= 0;

e74..  - x3 - 3*x31 + x66 =E= 0;

e75..  - x4 - 3*x32 + x67 =E= 0;

e76..  - x5 - x33 + x68 =E= 0;

e77..  - x6 - 2*x34 + x69 =E= 0;

e78..  - x7 - 3*x35 + x70 =E= 0;

e79..  - x8 - 3*x36 + x71 =E= 0;

e80..  - x9 - x37 + x72 =E= 0;

e81..  - x10 - 2*x38 + x73 =E= 0;

e82..  - x11 - 2*x39 + x74 =E= 0;

e83..  - x12 - 2*x40 + x75 =E= 0;

e84..  - x13 - x41 + x76 =E= 0;

e85..  - x14 - x42 + x77 =E= 0;

e86..  - x15 - x43 + x78 =E= 0;

e87..  - x16 - 3*x44 + x79 =E= 0;

e88..  - x17 - x45 + x80 =E= 0;

e89..  - x18 - x46 + x81 =E= 0;

e90..  - x19 - 2*x47 + x82 =E= 0;

e91..  - x20 - x48 + x83 =E= 0;

e92..  - x21 - 2*x49 + x84 =E= 0;

e93..  - x22 - 2*x50 + x85 =E= 0;

e94..  - x23 - x51 + x86 =E= 0;

e95..  - x24 - 3*x52 + x87 =E= 0;

e96..  - x25 - 2*x53 + x88 =E= 0;

e97..  - x26 - 2*x54 + x89 =E= 0;

e98..  - x27 - x55 + x90 =E= 0;

e99..  - x28 - x56 + x91 =E= 0;

e100..    x64 + x65 + x66 + x67 + x68 + x69 + x70 - x92 =L= 0;

e101..    x71 + x72 + x73 + x74 + x75 + x76 + x77 - x92 =L= 0;

e102..    x78 + x79 + x80 + x81 + x82 + x83 + x84 - x92 =L= 0;

e103..    x85 + x86 + x87 + x88 + x89 + x90 + x91 - x92 =L= 0;

e104..    x1 + 100*b93 =L= 100;

e105..    x2 + 100*b98 =L= 100;

e106..    x3 + 100*b103 =L= 100;

e107..    x4 + 100*b108 =L= 100;

e108..    x5 + 100*b113 =L= 100;

e109..    x6 + 100*b118 =L= 100;

e110..    x7 + 100*b123 =L= 100;

e111..    x8 + 100*b128 =L= 100;

e112..    x9 + 100*b133 =L= 100;

e113..    x10 + 100*b138 =L= 100;

e114..    x11 + 100*b143 =L= 100;

e115..    x12 + 100*b148 =L= 100;

e116..    x13 + 100*b153 =L= 100;

e117..    x14 + 100*b158 =L= 100;

e118..    x15 + 100*b163 =L= 100;

e119..    x16 + 100*b168 =L= 100;

e120..    x17 + 100*b173 =L= 100;

e121..    x18 + 100*b178 =L= 100;

e122..    x19 + 100*b183 =L= 100;

e123..    x20 + 100*b188 =L= 100;

e124..    x21 + 100*b193 =L= 100;

e125..    x22 + 100*b198 =L= 100;

e126..    x23 + 100*b203 =L= 100;

e127..    x24 + 100*b208 =L= 100;

e128..    x25 + 100*b213 =L= 100;

e129..    x26 + 100*b218 =L= 100;

e130..    x27 + 100*b223 =L= 100;

e131..    x28 + 100*b228 =L= 100;

e132..    x29 + x36 + x43 + x50 =G= 1;

e133..    x30 + x37 + x44 + x51 =G= 1;

e134..    x31 + x38 + x45 + x52 =G= 1;

e135..    x32 + x39 + x46 + x53 =G= 1;

e136..    x33 + x40 + x47 + x54 =G= 1;

e137..    x34 + x41 + x48 + x55 =G= 1;

e138..    x35 + x42 + x49 + x56 =G= 1;

* set non-default bounds
x29.lo = 0.01; x29.up = 4;
x30.lo = 0.01; x30.up = 4;
x31.lo = 0.01; x31.up = 4;
x32.lo = 0.01; x32.up = 4;
x33.lo = 0.01; x33.up = 4;
x34.lo = 0.01; x34.up = 4;
x35.lo = 0.01; x35.up = 4;
x36.lo = 0.01; x36.up = 4;
x37.lo = 0.01; x37.up = 4;
x38.lo = 0.01; x38.up = 4;
x39.lo = 0.01; x39.up = 4;
x40.lo = 0.01; x40.up = 4;
x41.lo = 0.01; x41.up = 4;
x42.lo = 0.01; x42.up = 4;
x43.lo = 0.01; x43.up = 4;
x44.lo = 0.01; x44.up = 4;
x45.lo = 0.01; x45.up = 4;
x46.lo = 0.01; x46.up = 4;
x47.lo = 0.01; x47.up = 4;
x48.lo = 0.01; x48.up = 4;
x49.lo = 0.01; x49.up = 4;
x50.lo = 0.01; x50.up = 4;
x51.lo = 0.01; x51.up = 4;
x52.lo = 0.01; x52.up = 4;
x53.lo = 0.01; x53.up = 4;
x54.lo = 0.01; x54.up = 4;
x55.lo = 0.01; x55.up = 4;
x56.lo = 0.01; x56.up = 4;

* set non-default levels
x29.l = 1;
x30.l = 1;
x31.l = 1;
x32.l = 1;
x33.l = 1;
x34.l = 1;
x35.l = 1;
x36.l = 1;
x37.l = 1;
x38.l = 1;
x39.l = 1;
x40.l = 1;
x41.l = 1;
x42.l = 1;
x43.l = 1;
x44.l = 1;
x45.l = 1;
x46.l = 1;
x47.l = 1;
x48.l = 1;
x49.l = 1;
x50.l = 1;
x51.l = 1;
x52.l = 1;
x53.l = 1;
x54.l = 1;
x55.l = 1;
x56.l = 1;
x92.l = 100;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2018-09-14 Git hash: ac5a5314
Imprint / Privacy Policy