MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance cvxnonsep_psig40r
separable reformulation of convex MINLP test problem with non-separable signomial objective function (cvxnonsep_psig40) see also problem description (PDF).
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 86.54040436 (ALPHAECP) 86.54509269 (ANTIGONE) 86.54510461 (BARON) 0.00000000 (BONMIN) 86.54202844 (COUENNE) 86.54510470 (LINDO) 86.54507680 (SCIP) 86.54224291 (SHOT) |
| Referencesⓘ | Kronqvist, Jan, Lundell, Andreas, and Westerlund, Tapio, Reformulations for utilizing separability when solving convex MINLP problems, submitted, 2017. |
| Applicationⓘ | Test Problem |
| Added to libraryⓘ | 11 Sep 2017 |
| Problem typeⓘ | MINLP |
| #Variablesⓘ | 82 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 20 |
| #Nonlinear Variablesⓘ | 41 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 20 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 41 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 42 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 41 |
| Operands in Gen. Nonlin. Functionsⓘ | log |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 123 |
| #Nonlinear Nonzeros in Jacobianⓘ | 41 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 41 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 41 |
| #Blocks in Hessian of Lagrangianⓘ | 41 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.5000e-02 |
| Maximal coefficientⓘ | 4.0000e+04 |
| Infeasibility of initial pointⓘ | 20.72 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 43 1 0 42 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 83 63 0 20 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 165 124 41 0
*
* Solve m using MINLP minimizing objvar;
Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18,i19
,i20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,objvar,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83;
Integer Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17
,i18,i19,i20;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43;
e1.. i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13
+ i14 + i15 + i16 + i17 + i18 + i19 + i20 + x21 + x22 + x23 + x24 + x25
+ x26 + x27 + x28 + x29 + x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37
+ x38 + x39 + x40 - objvar + 40000*x83 =E= 0;
e2.. x42 + x43 + x44 + x45 + x46 + x47 + x48 + x49 + x50 + x51 + x52 + x53
+ x54 + x55 + x56 + x57 + x58 + x59 + x60 + x61 + x62 + x63 + x64 + x65
+ x66 + x67 + x68 + x69 + x70 + x71 + x72 + x73 + x74 + x75 + x76 + x77
+ x78 + x79 + x80 + x81 + x82 =L= 0;
e3.. -0.015*log(i1) - x42 =L= 0;
e4.. -0.37*log(i2) - x43 =L= 0;
e5.. -0.25*log(i3) - x44 =L= 0;
e6.. -0.24*log(i4) - x45 =L= 0;
e7.. -0.45*log(i5) - x46 =L= 0;
e8.. -0.305*log(i6) - x47 =L= 0;
e9.. -0.31*log(i7) - x48 =L= 0;
e10.. -0.43*log(i8) - x49 =L= 0;
e11.. -0.405*log(i9) - x50 =L= 0;
e12.. -0.29*log(i10) - x51 =L= 0;
e13.. -0.09*log(i11) - x52 =L= 0;
e14.. -0.12*log(i12) - x53 =L= 0;
e15.. -0.445*log(i13) - x54 =L= 0;
e16.. -0.015*log(i14) - x55 =L= 0;
e17.. -0.245*log(i15) - x56 =L= 0;
e18.. -0.085*log(i16) - x57 =L= 0;
e19.. -0.49*log(i17) - x58 =L= 0;
e20.. -0.355*log(i18) - x59 =L= 0;
e21.. -0.25*log(i19) - x60 =L= 0;
e22.. -0.235*log(i20) - x61 =L= 0;
e23.. -0.03*log(x21) - x62 =L= 0;
e24.. -0.34*log(x22) - x63 =L= 0;
e25.. -0.02*log(x23) - x64 =L= 0;
e26.. -0.035*log(x24) - x65 =L= 0;
e27.. -0.26*log(x25) - x66 =L= 0;
e28.. -0.05*log(x26) - x67 =L= 0;
e29.. -0.41*log(x27) - x68 =L= 0;
e30.. -0.41*log(x28) - x69 =L= 0;
e31.. -0.36*log(x29) - x70 =L= 0;
e32.. -0.075*log(x30) - x71 =L= 0;
e33.. -0.36*log(x31) - x72 =L= 0;
e34.. -0.33*log(x32) - x73 =L= 0;
e35.. -0.26*log(x33) - x74 =L= 0;
e36.. -0.485*log(x34) - x75 =L= 0;
e37.. -0.4*log(x35) - x76 =L= 0;
e38.. -0.225*log(x36) - x77 =L= 0;
e39.. -0.215*log(x37) - x78 =L= 0;
e40.. -0.415*log(x38) - x79 =L= 0;
e41.. -0.04*log(x39) - x80 =L= 0;
e42.. -0.065*log(x40) - x81 =L= 0;
e43.. -log(x83) - x82 =L= 0;
* set non-default bounds
i1.lo = 1; i1.up = 10;
i2.lo = 1; i2.up = 10;
i3.lo = 1; i3.up = 10;
i4.lo = 1; i4.up = 10;
i5.lo = 1; i5.up = 10;
i6.lo = 1; i6.up = 10;
i7.lo = 1; i7.up = 10;
i8.lo = 1; i8.up = 10;
i9.lo = 1; i9.up = 10;
i10.lo = 1; i10.up = 10;
i11.lo = 1; i11.up = 10;
i12.lo = 1; i12.up = 10;
i13.lo = 1; i13.up = 10;
i14.lo = 1; i14.up = 10;
i15.lo = 1; i15.up = 10;
i16.lo = 1; i16.up = 10;
i17.lo = 1; i17.up = 10;
i18.lo = 1; i18.up = 10;
i19.lo = 1; i19.up = 10;
i20.lo = 1; i20.up = 10;
x21.lo = 1; x21.up = 10;
x22.lo = 1; x22.up = 10;
x23.lo = 1; x23.up = 10;
x24.lo = 1; x24.up = 10;
x25.lo = 1; x25.up = 10;
x26.lo = 1; x26.up = 10;
x27.lo = 1; x27.up = 10;
x28.lo = 1; x28.up = 10;
x29.lo = 1; x29.up = 10;
x30.lo = 1; x30.up = 10;
x31.lo = 1; x31.up = 10;
x32.lo = 1; x32.up = 10;
x33.lo = 1; x33.up = 10;
x34.lo = 1; x34.up = 10;
x35.lo = 1; x35.up = 10;
x36.lo = 1; x36.up = 10;
x37.lo = 1; x37.up = 10;
x38.lo = 1; x38.up = 10;
x39.lo = 1; x39.up = 10;
x40.lo = 1; x40.up = 10;
x83.lo = 1E-9;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

