MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_2_4
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
| Sourceⓘ | Test Problem ex14.2.4 of Chapter 14 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 5 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 4 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 7 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 6 |
| Operands in Gen. Nonlin. Functionsⓘ | div mul sqr |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 33 |
| #Nonlinear Nonzeros in Jacobianⓘ | 24 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
| #Blocks in Hessian of Lagrangianⓘ | 2 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 9.1052e-02 |
| Maximal coefficientⓘ | 3.9849e+03 |
| Infeasibility of initial pointⓘ | 0.001683 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 8 2 0 6 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 6 6 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 35 11 24 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,objvar,x6;
Positive Variables x6;
Equations e1,e2,e3,e4,e5,e6,e7,e8;
e1.. objvar - x6 =E= 0;
e2.. (0.549337520233386*x2 + 1.1263896788319*x3)/(x1 + 0.816722116903399*x2 +
0.538540530229217*x3) + 0.0910522583583458*x2/(0.972203312166101*x1 + x2
+ 0.394821041898112*x3) - 0.273994101407968*x3/(1.07810138009609*x1 +
0.707289137797622*x2 + x3) - (x1*(0.549337520233386*x2 + 1.1263896788319*
x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*x3) +
0.972203312166101*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr(
0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 1.07810138009609*x3*(
0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 +
0.707289137797622*x2 + x3)) - 3667.70490156687/(226.184 + x4) - x6
=L= -12.0457123581059;
e3.. (0.0910522583583458*x1 + 1.03765878646318*x3)/(0.972203312166101*x1 + x2
+ 0.394821041898112*x3) + 0.549337520233386*x1/(x1 + 0.816722116903399*x2
+ 0.538540530229217*x3) + 0.692718766203089*x3/(1.07810138009609*x1 +
0.707289137797622*x2 + x3) - (0.816722116903399*x1*(0.549337520233386*x2
+ 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*
x3) + x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr(
0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 0.707289137797622*x3*(
0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 +
0.707289137797622*x2 + x3)) - 2904.34268119711/(221.969 + x4) - x6
=L= -9.63112952618865;
e4.. (0.692718766203089*x2 - 0.273994101407968*x1)/(1.07810138009609*x1 +
0.707289137797622*x2 + x3) + 1.1263896788319*x1/(x1 + 0.816722116903399*x2
+ 0.538540530229217*x3) + 1.03765878646318*x2/(0.972203312166101*x1 + x2
+ 0.394821041898112*x3) - (0.538540530229217*x1*(0.549337520233386*x2 +
1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*x3)
+ 0.394821041898112*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr(
0.972203312166101*x1 + x2 + 0.394821041898112*x3) + x3*(0.692718766203089*
x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 + 0.707289137797622*x2
+ x3)) - 3984.92283948829/(233.426 + x4) - x6 =L= -11.9515596536534;
e5.. (-(0.549337520233386*x2 + 1.1263896788319*x3)/(x1 + 0.816722116903399*x2
+ 0.538540530229217*x3)) - (0.0910522583583458*x2/(0.972203312166101*x1
+ x2 + 0.394821041898112*x3) - 0.273994101407968*x3/(1.07810138009609*x1
+ 0.707289137797622*x2 + x3)) + x1*(0.549337520233386*x2 +
1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*x3)
+ 0.972203312166101*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr(
0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 1.07810138009609*x3*(
0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 +
0.707289137797622*x2 + x3) + 3667.70490156687/(226.184 + x4) - x6
=L= 12.0457123581059;
e6.. (-(0.0910522583583458*x1 + 1.03765878646318*x3)/(0.972203312166101*x1 + x2
+ 0.394821041898112*x3)) - (0.549337520233386*x1/(x1 + 0.816722116903399*
x2 + 0.538540530229217*x3) + 0.692718766203089*x3/(1.07810138009609*x1 +
0.707289137797622*x2 + x3)) + 0.816722116903399*x1*(0.549337520233386*x2
+ 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*
x3) + x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/sqr(
0.972203312166101*x1 + x2 + 0.394821041898112*x3) + 0.707289137797622*x3*(
0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 +
0.707289137797622*x2 + x3) + 2904.34268119711/(221.969 + x4) - x6
=L= 9.63112952618865;
e7.. (-(0.692718766203089*x2 - 0.273994101407968*x1)/(1.07810138009609*x1 +
0.707289137797622*x2 + x3)) - (1.1263896788319*x1/(x1 + 0.816722116903399*
x2 + 0.538540530229217*x3) + 1.03765878646318*x2/(0.972203312166101*x1 +
x2 + 0.394821041898112*x3)) + 0.538540530229217*x1*(0.549337520233386*x2
+ 1.1263896788319*x3)/sqr(x1 + 0.816722116903399*x2 + 0.538540530229217*
x3) + 0.394821041898112*x2*(0.0910522583583458*x1 + 1.03765878646318*x3)/
sqr(0.972203312166101*x1 + x2 + 0.394821041898112*x3) + x3*(
0.692718766203089*x2 - 0.273994101407968*x1)/sqr(1.07810138009609*x1 +
0.707289137797622*x2 + x3) + 3984.92283948829/(233.426 + x4) - x6
=L= 11.9515596536534;
e8.. x1 + x2 + x3 =E= 1;
* set non-default bounds
x1.lo = 1E-6; x1.up = 1;
x2.lo = 1E-6; x2.up = 1;
x3.lo = 1E-6; x3.up = 1;
x4.lo = 40; x4.up = 90;
* set non-default levels
x1.l = 0.187;
x2.l = 0.56;
x3.l = 0.253;
x4.l = 72.957;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

