MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex2_1_9
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -0.37500000 (ANTIGONE) -0.37500000 (BARON) -0.37500000 (COUENNE) -0.37500000 (CPLEX) -0.37500140 (GUROBI) -0.37500000 (LINDO) -0.37500000 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
| Sourceⓘ | Test Problem ex2.1.9 of Chapter 2 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | QP |
| #Variablesⓘ | 10 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 10 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 10 |
| #Nonlinear Nonzeros in Objectiveⓘ | 10 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 10 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 44 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 10 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 10 |
| Average blocksize in Hessian of Lagrangianⓘ | 10.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 1.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 2 2 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 11 11 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 21 11 10 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10;
Equations e1,e2;
e1.. -(x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x6 + x6*x7 + x7*x8 + x8*x9 + x9*x10
+ x1*x3 + x2*x4 + x3*x5 + x4*x6 + x5*x7 + x6*x8 + x7*x9 + x8*x10 + x1*x9
+ x1*x10 + x2*x10 + x1*x5 + x4*x7) - objvar =E= 0;
e2.. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 =E= 1;
* set non-default levels
x4.l = 0.25;
x5.l = 0.25;
x6.l = 0.25;
x7.l = 0.25;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

