MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex5_2_4
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -450.00000050 (ANTIGONE) -450.00000090 (BARON) -450.00026250 (COUENNE) -450.00000000 (GUROBI) -450.00000000 (LINDO) -450.00000080 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Ben-Tal, A, Eiger, G, and Gershovitz, V, Global Minimization by Reducing the Duality Gap, Mathematical Programming, 63:1, 1994, 193-212. |
| Sourceⓘ | Test Problem ex5.2.4 of Chapter 5 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | QCQP |
| #Variablesⓘ | 7 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 5 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 7 |
| #Nonlinear Nonzeros in Objectiveⓘ | 5 |
| #Constraintsⓘ | 6 |
| #Linear Constraintsⓘ | 3 |
| #Quadratic Constraintsⓘ | 3 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 20 |
| #Nonlinear Nonzeros in Jacobianⓘ | 11 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 12 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
| Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.0000e-01 |
| Maximal coefficientⓘ | 1.6000e+01 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 7 2 0 5 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 8 8 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 28 12 16 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7;
Equations e1,e2,e3,e4,e5,e6,e7;
e1.. -((9 - 6*x1 - 16*x2 - 15*x3)*x4 + (15 - 6*x1 - 16*x2 - 15*x3)*x5) + x6
- 5*x7 - objvar =E= 0;
e2.. x3*x4 + x3*x5 =L= 50;
e3.. x4 + x6 =L= 100;
e4.. x5 + x7 =L= 200;
e5.. (-2.5 + 3*x1 + x2 + x3)*x4 - 0.5*x6 =L= 0;
e6.. (-1.5 + 3*x1 + x2 + x3)*x5 + 0.5*x7 =L= 0;
e7.. x1 + x2 + x3 =E= 1;
* set non-default bounds
x1.up = 1;
x2.up = 1;
x3.up = 1;
x4.up = 100;
x5.up = 200;
x6.up = 100;
x7.up = 200;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

