MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_8
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -0.02701481 (ANTIGONE) -0.02700635 (BARON) -0.02704771 (COUENNE) -0.02700791 (LINDO) -0.02700731 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, Global Optimization for the Phase Stability Problem, AIChE Journal, 41:7, 1995, 1798-1814. |
| Sourceⓘ | Test Problem ex6.2.8 of Chapter 6 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 3 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 3 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 3 |
| #Nonlinear Nonzeros in Objectiveⓘ | 3 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | log mul |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 3 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 9 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 4.2358e-02 |
| Maximal coefficientⓘ | 4.5876e+01 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 2 2 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 4 4 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 7 4 3 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4;
Equations e1,e2;
e1.. -(log(2.4088*x2 + 8.8495*x3 + 2.0086*x4)*(10.4807341082197*x2 +
38.5043409542885*x3 + 8.73945638067505*x4) + 0.303602206615077*x2 -
3.98949602721008*x3 + 0.0423576909050935*x4 + 0.240734108219679*log(x2)*x2
+ 2.64434095428848*log(x3)*x3 + 0.399456380675047*log(x4)*x4 -
0.240734108219679*log(2.4088*x2 + 8.8495*x3 + 2.0086*x4)*x2 -
2.64434095428848*log(2.4088*x2 + 8.8495*x3 + 2.0086*x4)*x3 -
0.399456380675047*log(2.4088*x2 + 8.8495*x3 + 2.0086*x4)*x4 + 11.24*log(x2
)*x2 + 36.86*log(x3)*x3 + 9.34*log(x4)*x4 - 11.24*log(2.248*x2 + 7.372*x3
+ 1.868*x4)*x2 - 36.86*log(2.248*x2 + 7.372*x3 + 1.868*x4)*x3 - 9.34*log(
2.248*x2 + 7.372*x3 + 1.868*x4)*x4 + log(2.248*x2 + 7.372*x3 + 1.868*x4)*(
2.248*x2 + 7.372*x3 + 1.868*x4) + 2.248*log(x2)*x2 + 7.372*log(x3)*x3 +
1.868*log(x4)*x4 - 2.248*log(2.248*x2 + 5.82088173817021*x3 +
0.382446861901943*x4)*x2 - 7.372*log(0.972461133672523*x2 + 7.372*x3 +
1.1893141713454*x4)*x3 - 1.868*log(1.86752460515164*x2 + 2.61699842799583*
x3 + 1.868*x4)*x4 - 12.7287341082197*log(x2)*x2 - 45.8763409542885*log(x3)
*x3 - 10.607456380675*log(x4)*x4) + objvar =E= 0;
e2.. x2 + x3 + x4 =E= 1;
* set non-default bounds
x2.lo = 1E-6; x2.up = 1;
x3.lo = 1E-6; x3.up = 1;
x4.lo = 1E-6; x4.up = 1;
* set non-default levels
x2.l = 0.7154;
x3.l = 0.00336;
x4.l = 0.28124;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

