MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_1_7
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.02931060 (ANTIGONE) 0.02931083 (BARON) 0.02931083 (COUENNE) 0.02931083 (LINDO) 0.02931011 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Adjiman, C S, Dallwig, S, Floudas, C A, and Neumaier, A, A Global Optimization Method, alpha-BB, For General Twice-Differentiable NLPs - I. Theoretical Advances, Computers and Chemical Engineering, 22:9, 1998, 1137-1158. Murtagh, B A and Saunders, M A, MINOS 5.4 User's Guide, Tech. Rep., Systems Optimization Laboratory, Department of Operations Research, 1993. |
| Sourceⓘ | Test Problem ex8.1.7 of Chapter 8 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 5 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 5 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | polynomial |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 5 |
| #Nonlinear Nonzeros in Objectiveⓘ | 5 |
| #Constraintsⓘ | 5 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 3 |
| #Polynomial Constraintsⓘ | 2 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 14 |
| #Nonlinear Nonzeros in Jacobianⓘ | 8 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 15 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
| Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.0000e-01 |
| Maximal coefficientⓘ | 4.0000e+00 |
| Infeasibility of initial pointⓘ | 6.243 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 6 2 0 4 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 6 6 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 20 7 13 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,objvar;
Equations e1,e2,e3,e4,e5,e6;
e1.. sqr(x2) + POWER(x3,3) + x1 =L= 6.24264068711929;
e2.. (-POWER(x3,3)) - sqr(x2) - x1 =L= -6.24264068711929;
e3.. -sqr(x3) + x2 + x4 =L= 0.82842712474619;
e4.. sqr(x3) - x2 - x4 =L= -0.82842712474619;
e5.. 0.5*x1*x5 + 0.5*x1*x5 =E= 2;
e6.. -(sqr((-1) + x1) + sqr(x1 - x2) + POWER(x2 - x3,3) + POWER(x3 - x4,4) +
POWER(x4 - x5,4)) + objvar =E= 0;
* set non-default bounds
x1.lo = -5; x1.up = 5;
x2.lo = -5; x2.up = 5;
x3.lo = -5; x3.up = 5;
x4.lo = -5; x4.up = 5;
x5.lo = -5; x5.up = 5;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

