MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: harker

Formats ams gms mod nl osil pip
Primal Bounds
-986.51348400 p1 ( gdx sol )
(infeas: 2e-14)
Dual Bounds
-986.51348400 (ANTIGONE)
-986.51348500 (BARON)
-986.51348400 (COUENNE)
-986.51348410 (LINDO)
-986.51348400 (SCIP)
References Harker, P T, Alternative Models of Spatial Competition, Operations Research, 34:3, 1986, 410-425.
Source GAMS Model Library model harker
Application Spatial Competition
Added to library 31 Jul 2001
Problem type NLP
#Variables 20
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 20
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type polynomial
Objective curvature convex
#Nonzeros in Objective 20
#Nonlinear Nonzeros in Objective 20
#Constraints 7
#Linear Constraints 7
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 40
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 20
#Nonzeros in Diagonal of Hessian of Lagrangian 20
#Blocks in Hessian of Lagrangian 20
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          8        8        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         21       21        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         61       41       20        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20;

Equations  e1,e2,e3,e4,e5,e6,e7,e8;


e1..    x15 + x16 + x17 - x18 - x19 - x20 =E= 0;

e2..  - x1 - x2 + x5 + x8 - x15 + x18 =E= 0;

e3..  - x3 + x11 - x16 + x19 =E= 0;

e4..  - x4 + x12 - x17 + x20 =E= 0;

e5..    x1 - x5 - x6 - x7 + x9 + x13 =E= 0;

e6..    x2 + x6 - x8 - x9 - x10 + x14 =E= 0;

e7..    x3 + x4 + x7 + x10 - x11 - x12 - x13 - x14 =E= 0;

e8.. -(19*x15 - 0.1*sqr(x15) - 0.5*sqr(x18) - x18 - 0.005*sqr(x16) + 27*x16 - 
     0.4*sqr(x19) - 2*x19 - 0.15*sqr(x17) + 30*x17 - 0.3*sqr(x20) - 1.5*x20 - (
     0.166666666666667*POWER(x1,3) + x1 + 0.0666666666666667*POWER(x2,3) + 2*x2
      + 0.1*POWER(x3,3) + 3*x3 + 0.133333333333333*POWER(x4,3) + x4 + 0.1*
     POWER(x5,3) + 2*x5 + 0.0333333333333333*POWER(x6,3) + x6 + 
     0.0333333333333333*POWER(x7,3) + x7 + 0.166666666666667*POWER(x8,3) + 3*x8
      + 0.0666666666666667*POWER(x9,3) + 2*x9 + 0.333333333333333*POWER(x10,3)
      + x10 + 0.0833333333333333*POWER(x11,3) + 2*x11 + 0.0666666666666667*
     POWER(x12,3) + 2*x12 + 0.3*POWER(x13,3) + x13 + 0.266666666666667*POWER(
     x14,3) + 3*x14)) - objvar =E= 0;

* set non-default levels
x15.l = 25;
x16.l = 25;
x17.l = 25;
x18.l = 25;
x19.l = 25;
x20.l = 25;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2018-09-14 Git hash: ac5a5314
Imprint / Privacy Policy