MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: hydro

Formats ams gms lp mod nl osil pip
Primal Bounds
4366944.16000000 p1 ( gdx sol )
(infeas: 5e-10)
Dual Bounds
4366944.10500000 (ANTIGONE)
4366944.15500000 (BARON)
4366944.15900000 (COUENNE)
4366944.15900000 (LINDO)
4366944.12300000 (SCIP)
References Wood, A J and Wollenberg, B F, Example Problem 7b. Chapter 7 in Wood, A J and Wollenberg, B F, Power Generation, Operation and Control, John Wiley and Sons, 1984, 202.
Source GAMS Model Library model hydro
Application Hydro Energy System Scheduling
Added to library 31 Jul 2001
Problem type QCQP
#Variables 31
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 12
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 6
#Nonlinear Nonzeros in Objective 6
#Constraints 24
#Linear Constraints 18
#Quadratic Constraints 6
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 60
#Nonlinear Nonzeros in Jacobian 6
#Nonzeros in (Upper-Left) Hessian of Lagrangian 12
#Nonzeros in Diagonal of Hessian of Lagrangian 12
#Blocks in Hessian of Lagrangian 12
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 6.4e+04
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         25       19        6        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         32       32        0        0        0        0        0        0
*  FX      1
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         67       55       12        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,objvar;

Positive Variables  x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21
          ,x22,x23,x24;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25;


e1.. -82.8*(0.0016*sqr(x1) + 8*x1 + 0.0016*sqr(x2) + 8*x2 + 0.0016*sqr(x3) + 8*
     x3 + 0.0016*sqr(x4) + 8*x4 + 0.0016*sqr(x5) + 8*x5 + 0.0016*sqr(x6) + 8*x6
     ) + objvar =E= 248400;

e2..    x1 + x7 - x13 =G= 1200;

e3..    x2 + x8 - x14 =G= 1500;

e4..    x3 + x9 - x15 =G= 1100;

e5..    x4 + x10 - x16 =G= 1800;

e6..    x5 + x11 - x17 =G= 950;

e7..    x6 + x12 - x18 =G= 1300;

e8..    12*x19 - x25 + x26 =E= 24000;

e9..    12*x20 - x26 + x27 =E= 24000;

e10..    12*x21 - x27 + x28 =E= 24000;

e11..    12*x22 - x28 + x29 =E= 24000;

e12..    12*x23 - x29 + x30 =E= 24000;

e13..    12*x24 - x30 + x31 =E= 24000;

e14.. -8e-5*sqr(x7) + x13 =E= 0;

e15.. -8e-5*sqr(x8) + x14 =E= 0;

e16.. -8e-5*sqr(x9) + x15 =E= 0;

e17.. -8e-5*sqr(x10) + x16 =E= 0;

e18.. -8e-5*sqr(x11) + x17 =E= 0;

e19.. -8e-5*sqr(x12) + x18 =E= 0;

e20..  - 4.97*x7 + x19 =E= 330;

e21..  - 4.97*x8 + x20 =E= 330;

e22..  - 4.97*x9 + x21 =E= 330;

e23..  - 4.97*x10 + x22 =E= 330;

e24..  - 4.97*x11 + x23 =E= 330;

e25..  - 4.97*x12 + x24 =E= 330;

* set non-default bounds
x1.lo = 150; x1.up = 1500;
x2.lo = 150; x2.up = 1500;
x3.lo = 150; x3.up = 1500;
x4.lo = 150; x4.up = 1500;
x5.lo = 150; x5.up = 1500;
x6.lo = 150; x6.up = 1500;
x7.up = 1000;
x8.up = 1000;
x9.up = 1000;
x10.up = 1000;
x11.up = 1000;
x12.up = 1000;
x25.fx = 100000;
x26.lo = 60000; x26.up = 120000;
x27.lo = 60000; x27.up = 120000;
x28.lo = 60000; x28.up = 120000;
x29.lo = 60000; x29.up = 120000;
x30.lo = 60000; x30.up = 120000;
x31.lo = 60000; x31.up = 120000;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2018-09-14 Git hash: ac5a5314
Imprint / Privacy Policy