MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: mathopt2

Formats ams gms mod nl osil pip
Primal Bounds (infeas ≤ 1e-08)
0.00000000 p1 ( gdx sol )
(infeas: 4e-17)
Other points (infeas > 1e-08)  
Dual Bounds
-0.00000000 (ANTIGONE)
-0.00000000 (BARON)
0.00000000 (COUENNE)
0.00000000 (LINDO)
0.00000000 (SCIP)
References Mathematica, MathOptimizer - An Advanced Modeling and Optimization System for Mathematica Users.
Pinter, J D, Global Optimization in Action - Continuous and Lipschitz Optimization: Algorithms, Implementations, and Applications, Kluwer Acadameic Publishers, 1996.
Pinter, J D, Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial, Lionheart Publishing, Atlanta, GA, 2001.
Source GAMS Model Library model mathopt2
Application Test Problem
Added to library 31 Jul 2001
Problem type NLP
#Variables 2
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type polynomial
Objective curvature nonconcave
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 2
#Constraints 4
#Linear Constraints 3
#Quadratic Constraints 1
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 8
#Nonlinear Nonzeros in Jacobian 2
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 210
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          5        3        0        2        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        3        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         11        7        4        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,objvar;

Equations  e1,e2,e3,e4,e5;


e1.. -(sqr(2*sqr(x1) - x2) + sqr(x2 - 6*sqr(x1))) + objvar =E= 0;

e2.. x1 - (x1*x2 + 10*x2) =E= 0;

e3..    x1 - 3*x2 =E= 0;

e4..    x1 + x2 =L= 1;

e5..  - x1 + x2 =L= 2;

* set non-default levels
x1.l = 10;
x2.l = -10;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2019-07-12 Git hash: 46a7b4f1
Imprint / Privacy Policy