MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance mhw4d
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.02931083 (COUENNE) 0.02931083 (LINDO) 0.02930981 (SCIP) |
| Referencesⓘ | Wright, M H, Numerical Methods for Nonlinearly Constraint Optimization, PhD thesis, Stanford University, 1976. |
| Sourceⓘ | GAMS Model Library model mhw4d |
| Applicationⓘ | Test Problem |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 5 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 5 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | polynomial |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 5 |
| #Nonlinear Nonzeros in Objectiveⓘ | 5 |
| #Constraintsⓘ | 3 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 2 |
| #Polynomial Constraintsⓘ | 1 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 8 |
| #Nonlinear Nonzeros in Jacobianⓘ | 5 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 15 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
| Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 4.0000e+00 |
| Infeasibility of initial pointⓘ | 2.243 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 4 4 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 6 6 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 14 4 10 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6;
Equations e1,e2,e3,e4;
e1.. -(sqr((-1) + x2) + sqr(x2 - x3) + POWER(x3 - x4,3) + POWER(x4 - x5,4) +
POWER(x5 - x6,4)) + objvar =E= 0;
e2.. sqr(x3) + POWER(x4,3) + x2 =E= 6.24264068711929;
e3.. -sqr(x4) + x3 + x5 =E= 0.82842712474619;
e4.. x2*x6 =E= 2;
* set non-default levels
x2.l = -1;
x3.l = 2;
x4.l = 1;
x5.l = -2;
x6.l = -2;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

