MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance orth_d3m6
computation of the minimal orthogonality measure of a 3x6 matrix with orthonormal rows
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.70710678 (ANTIGONE) 0.29288071 (BARON) 0.70710678 (COUENNE) 0.70710581 (GUROBI) 0.25563943 (LINDO) 0.36092771 (SCIP) 0.00000000 (SHOT) |
| Sourceⓘ | Matthias Schymura |
| Applicationⓘ | Geometry |
| Added to libraryⓘ | 11 Sep 2017 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 25 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 24 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 62 |
| #Linear Constraintsⓘ | 10 |
| #Quadratic Constraintsⓘ | 6 |
| #Polynomial Constraintsⓘ | 46 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 526 |
| #Nonlinear Nonzeros in Jacobianⓘ | 468 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 270 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 18 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 24 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 24 |
| Average blocksize in Hessian of Lagrangianⓘ | 24.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 1.0000e+00 |
| Infeasibility of initial pointⓘ | 3 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 62 17 5 40 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 25 25 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 526 58 468 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
,x19,x20,x21,x22,x23,x24,x25;
Positive Variables x20,x21,x22,x23,x24,x25;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62;
e1.. x2 =E= 1;
e2.. x3 =E= 0;
e3.. x4 =E= 0;
e4.. x5 =E= 0;
e5.. x6 =G= 0;
e6.. x7 - x8 =G= 0;
e7.. x8 - x9 =G= 0;
e8.. x9 - x10 =G= 0;
e9.. x10 =G= 0;
e10.. sqr(x2) + sqr(x3) + sqr(x4) =E= 1;
e11.. sqr(x6) + sqr(x11) + sqr(x5) =E= 1;
e12.. sqr(x7) + sqr(x12) + sqr(x13) =E= 1;
e13.. sqr(x8) + sqr(x14) + sqr(x15) =E= 1;
e14.. sqr(x9) + sqr(x16) + sqr(x17) =E= 1;
e15.. sqr(x10) + sqr(x18) + sqr(x19) =E= 1;
e16.. sqr(x2)*x20 + sqr(x6)*x21 + sqr(x7)*x22 + sqr(x8)*x23 + sqr(x9)*x24 +
sqr(x10)*x25 =E= 1;
e17.. x20*x2*x3 + x21*x6*x11 + x22*x7*x12 + x23*x8*x14 + x24*x9*x16 + x25*x10*
x18 =E= 0;
e18.. x20*x2*x4 + x21*x6*x5 + x22*x7*x13 + x23*x8*x15 + x24*x9*x17 + x25*x10*
x19 =E= 0;
e19.. sqr(x3)*x20 + sqr(x11)*x21 + sqr(x12)*x22 + sqr(x14)*x23 + sqr(x16)*x24
+ sqr(x18)*x25 =E= 1;
e20.. x20*x3*x4 + x21*x11*x5 + x22*x12*x13 + x23*x14*x15 + x24*x16*x17 + x25*
x18*x19 =E= 0;
e21.. sqr(x4)*x20 + sqr(x5)*x21 + sqr(x13)*x22 + sqr(x15)*x23 + sqr(x17)*x24 +
sqr(x19)*x25 =E= 1;
e22.. x20 + x21 + x22 + x23 + x24 + x25 =E= 3;
e23.. x6*x12*x4 - x7*x11*x4 + x7*x3*x5 - x2*x12*x5 - x6*x3*x13 + x2*x11*x13
- objvar =L= 0;
e24.. x7*x11*x4 - x6*x12*x4 - x7*x3*x5 + x2*x12*x5 + x6*x3*x13 - x2*x11*x13
- objvar =L= 0;
e25.. x6*x14*x4 - x8*x11*x4 + x8*x3*x5 - x2*x14*x5 - x6*x3*x15 + x2*x11*x15
- objvar =L= 0;
e26.. x8*x11*x4 - x6*x14*x4 - x8*x3*x5 + x2*x14*x5 + x6*x3*x15 - x2*x11*x15
- objvar =L= 0;
e27.. x6*x16*x4 - x9*x11*x4 + x9*x3*x5 - x2*x16*x5 - x6*x3*x17 + x2*x11*x17
- objvar =L= 0;
e28.. x9*x11*x4 - x6*x16*x4 - x9*x3*x5 + x2*x16*x5 + x6*x3*x17 - x2*x11*x17
- objvar =L= 0;
e29.. x6*x18*x4 - x10*x11*x4 + x10*x3*x5 - x2*x18*x5 - x6*x3*x19 + x2*x11*x19
- objvar =L= 0;
e30.. x10*x11*x4 - x6*x18*x4 - x10*x3*x5 + x2*x18*x5 + x6*x3*x19 - x2*x11*x19
- objvar =L= 0;
e31.. x7*x14*x4 - x8*x12*x4 + x8*x3*x13 - x2*x14*x13 - x7*x3*x15 + x2*x12*x15
- objvar =L= 0;
e32.. x8*x12*x4 - x7*x14*x4 - x8*x3*x13 + x2*x14*x13 + x7*x3*x15 - x2*x12*x15
- objvar =L= 0;
e33.. x7*x16*x4 - x9*x12*x4 + x9*x3*x13 - x2*x16*x13 - x7*x3*x17 + x2*x12*x17
- objvar =L= 0;
e34.. x9*x12*x4 - x7*x16*x4 - x9*x3*x13 + x2*x16*x13 + x7*x3*x17 - x2*x12*x17
- objvar =L= 0;
e35.. x7*x18*x4 - x10*x12*x4 + x10*x3*x13 - x2*x18*x13 - x7*x3*x19 + x2*x12*x19
- objvar =L= 0;
e36.. x10*x12*x4 - x7*x18*x4 - x10*x3*x13 + x2*x18*x13 + x7*x3*x19 - x2*x12*x19
- objvar =L= 0;
e37.. x8*x16*x4 - x9*x14*x4 + x9*x3*x15 - x2*x16*x15 - x8*x3*x17 + x2*x14*x17
- objvar =L= 0;
e38.. x9*x14*x4 - x8*x16*x4 - x9*x3*x15 + x2*x16*x15 + x8*x3*x17 - x2*x14*x17
- objvar =L= 0;
e39.. x8*x18*x4 - x10*x14*x4 + x10*x3*x15 - x2*x18*x15 - x8*x3*x19 + x2*x14*x19
- objvar =L= 0;
e40.. x10*x14*x4 - x8*x18*x4 - x10*x3*x15 + x2*x18*x15 + x8*x3*x19 - x2*x14*x19
- objvar =L= 0;
e41.. x9*x18*x4 - x10*x16*x4 + x10*x3*x17 - x2*x18*x17 - x9*x3*x19 + x2*x16*x19
- objvar =L= 0;
e42.. x10*x16*x4 - x9*x18*x4 - x10*x3*x17 + x2*x18*x17 + x9*x3*x19 - x2*x16*x19
- objvar =L= 0;
e43.. x7*x14*x5 - x8*x12*x5 + x8*x11*x13 - x6*x14*x13 - x7*x11*x15 + x6*x12*x15
- objvar =L= 0;
e44.. x8*x12*x5 - x7*x14*x5 - x8*x11*x13 + x6*x14*x13 + x7*x11*x15 - x6*x12*x15
- objvar =L= 0;
e45.. x7*x16*x5 - x9*x12*x5 + x9*x11*x13 - x6*x16*x13 - x7*x11*x17 + x6*x12*x17
- objvar =L= 0;
e46.. x9*x12*x5 - x7*x16*x5 - x9*x11*x13 + x6*x16*x13 + x7*x11*x17 - x6*x12*x17
- objvar =L= 0;
e47.. x7*x18*x5 - x10*x12*x5 + x10*x11*x13 - x6*x18*x13 - x7*x11*x19 + x6*x12*
x19 - objvar =L= 0;
e48.. x10*x12*x5 - x7*x18*x5 - x10*x11*x13 + x6*x18*x13 + x7*x11*x19 - x6*x12*
x19 - objvar =L= 0;
e49.. x8*x16*x5 - x9*x14*x5 + x9*x11*x15 - x6*x16*x15 - x8*x11*x17 + x6*x14*x17
- objvar =L= 0;
e50.. x9*x14*x5 - x8*x16*x5 - x9*x11*x15 + x6*x16*x15 + x8*x11*x17 - x6*x14*x17
- objvar =L= 0;
e51.. x8*x18*x5 - x10*x14*x5 + x10*x11*x15 - x6*x18*x15 - x8*x11*x19 + x6*x14*
x19 - objvar =L= 0;
e52.. x10*x14*x5 - x8*x18*x5 - x10*x11*x15 + x6*x18*x15 + x8*x11*x19 - x6*x14*
x19 - objvar =L= 0;
e53.. x9*x18*x5 - x10*x16*x5 + x10*x11*x17 - x6*x18*x17 - x9*x11*x19 + x6*x16*
x19 - objvar =L= 0;
e54.. x10*x16*x5 - x9*x18*x5 - x10*x11*x17 + x6*x18*x17 + x9*x11*x19 - x6*x16*
x19 - objvar =L= 0;
e55.. x8*x16*x13 - x9*x14*x13 + x9*x12*x15 - x7*x16*x15 - x8*x12*x17 + x7*x14*
x17 - objvar =L= 0;
e56.. x9*x14*x13 - x8*x16*x13 - x9*x12*x15 + x7*x16*x15 + x8*x12*x17 - x7*x14*
x17 - objvar =L= 0;
e57.. x8*x18*x13 - x10*x14*x13 + x10*x12*x15 - x7*x18*x15 - x8*x12*x19 + x7*x14
*x19 - objvar =L= 0;
e58.. x10*x14*x13 - x8*x18*x13 - x10*x12*x15 + x7*x18*x15 + x8*x12*x19 - x7*x14
*x19 - objvar =L= 0;
e59.. x9*x18*x13 - x10*x16*x13 + x10*x12*x17 - x7*x18*x17 - x9*x12*x19 + x7*x16
*x19 - objvar =L= 0;
e60.. x10*x16*x13 - x9*x18*x13 - x10*x12*x17 + x7*x18*x17 + x9*x12*x19 - x7*x16
*x19 - objvar =L= 0;
e61.. x9*x18*x15 - x10*x16*x15 + x10*x14*x17 - x8*x18*x17 - x9*x14*x19 + x8*x16
*x19 - objvar =L= 0;
e62.. x10*x16*x15 - x9*x18*x15 - x10*x14*x17 + x8*x18*x17 + x9*x14*x19 - x8*x16
*x19 - objvar =L= 0;
* set non-default bounds
objvar.lo = 0; objvar.up = 1;
x2.lo = -1; x2.up = 1;
x3.lo = -1; x3.up = 1;
x4.lo = -1; x4.up = 1;
x5.lo = -1; x5.up = 1;
x6.lo = -1; x6.up = 1;
x7.lo = -1; x7.up = 1;
x8.lo = -1; x8.up = 1;
x9.lo = -1; x9.up = 1;
x10.lo = -1; x10.up = 1;
x11.lo = -1; x11.up = 1;
x12.lo = -1; x12.up = 1;
x13.lo = -1; x13.up = 1;
x14.lo = -1; x14.up = 1;
x15.lo = -1; x15.up = 1;
x16.lo = -1; x16.up = 1;
x17.lo = -1; x17.up = 1;
x18.lo = -1; x18.up = 1;
x19.lo = -1; x19.up = 1;
x20.up = 1;
x21.up = 1;
x22.up = 1;
x23.up = 1;
x24.up = 1;
x25.up = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

