MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance orth_d3m6_pl
computation of the minimal orthogonality measure of a 3x6 matrix with orthonormal rows; formulation based on parametrization via Plücker coordinates
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.19793135 (ANTIGONE) 0.19778752 (BARON) 0.04012082 (COUENNE) 0.70710501 (GUROBI) 0.10454148 (LINDO) 0.40000000 (SCIP) |
| Sourceⓘ | Matthias Schymura |
| Applicationⓘ | Geometry |
| Added to libraryⓘ | 11 Sep 2017 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 42 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 41 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 127 |
| #Linear Constraintsⓘ | 61 |
| #Quadratic Constraintsⓘ | 60 |
| #Polynomial Constraintsⓘ | 6 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 590 |
| #Nonlinear Nonzeros in Jacobianⓘ | 450 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 370 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
| #Blocks in Hessian of Lagrangianⓘ | 2 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 35 |
| Average blocksize in Hessian of Lagrangianⓘ | 20.5 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 1.0000e+00 |
| Infeasibility of initial pointⓘ | 3 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 127 67 1 59 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 42 42 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 590 140 450 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
,x36,x37,x38,x39,x40,x41,x42;
Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x24;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127;
e1.. objvar =G= 0;
e2.. -x3*x4 + x2 =E= 0;
e3.. -x3*x6 + x5 =E= 0;
e4.. -x3*x8 + x7 =E= 0;
e5.. -x3*x10 + x9 =E= 0;
e6.. -x3*x12 + x11 =E= 0;
e7.. -x4*x6 + x13 =E= 0;
e8.. -x4*x8 + x14 =E= 0;
e9.. -x4*x10 + x15 =E= 0;
e10.. -x4*x12 + x16 =E= 0;
e11.. -x6*x8 + x17 =E= 0;
e12.. -x6*x10 + x18 =E= 0;
e13.. -x6*x12 + x19 =E= 0;
e14.. -x8*x10 + x20 =E= 0;
e15.. -x8*x12 + x21 =E= 0;
e16.. -x10*x12 + x22 =E= 0;
e17.. x3 + x4 + x6 + x8 + x10 + x12 =E= 3;
e18.. x23 - x24 =L= 0;
e19.. - x24 + x25 =L= 0;
e20.. - x24 + x26 =L= 0;
e21.. - x24 + x27 =L= 0;
e22.. - x24 + x28 =L= 0;
e23.. - x24 + x29 =L= 0;
e24.. - x24 + x30 =L= 0;
e25.. - x24 + x31 =L= 0;
e26.. - x24 + x32 =L= 0;
e27.. - x24 + x33 =L= 0;
e28.. - x24 + x34 =L= 0;
e29.. - x24 + x35 =L= 0;
e30.. - x24 + x36 =L= 0;
e31.. - x24 + x37 =L= 0;
e32.. - x24 + x38 =L= 0;
e33.. - x24 + x39 =L= 0;
e34.. - x24 + x40 =L= 0;
e35.. - x24 + x41 =L= 0;
e36.. - x24 + x42 =L= 0;
e37.. sqr(x23)*x13 + sqr(x25)*x14 + sqr(x26)*x15 + sqr(x27)*x16 + sqr(x28)*x17
+ sqr(x29)*x18 + sqr(x30)*x19 + sqr(x31)*x20 + sqr(x32)*x21 + sqr(x33)*
x22 =E= 1;
e38.. sqr(x23)*x5 + sqr(x25)*x7 + sqr(x26)*x9 + sqr(x27)*x11 + sqr(x34)*x17 +
sqr(x35)*x18 + sqr(x36)*x19 + sqr(x37)*x20 + sqr(x38)*x21 + sqr(x39)*x22
=E= 1;
e39.. sqr(x23)*x2 + sqr(x28)*x7 + sqr(x29)*x9 + sqr(x30)*x11 + sqr(x34)*x14 +
sqr(x35)*x15 + sqr(x36)*x16 + sqr(x40)*x20 + sqr(x41)*x21 + sqr(x42)*x22
=E= 1;
e40.. sqr(x25)*x2 + sqr(x28)*x5 + sqr(x31)*x9 + sqr(x32)*x11 + sqr(x34)*x13 +
sqr(x37)*x15 + sqr(x38)*x16 + sqr(x40)*x18 + sqr(x41)*x19 + sqr(x24)*x22
=E= 1;
e41.. sqr(x26)*x2 + sqr(x29)*x5 + sqr(x31)*x7 + sqr(x33)*x11 + sqr(x35)*x13 +
sqr(x37)*x14 + sqr(x39)*x16 + sqr(x40)*x17 + sqr(x42)*x19 + sqr(x24)*x21
=E= 1;
e42.. sqr(x27)*x2 + sqr(x30)*x5 + sqr(x32)*x7 + sqr(x33)*x9 + sqr(x36)*x13 +
sqr(x38)*x14 + sqr(x39)*x15 + sqr(x41)*x17 + sqr(x42)*x18 + sqr(x24)*x20
=E= 1;
e43.. x23*x31 - x25*x29 + x26*x28 =E= 0;
e44.. x23*x37 - x25*x35 + x26*x34 =E= 0;
e45.. x23*x32 - x25*x30 + x27*x28 =E= 0;
e46.. x23*x38 - x25*x36 + x27*x34 =E= 0;
e47.. x23*x33 - x26*x30 + x27*x29 =E= 0;
e48.. x23*x39 - x26*x36 + x27*x35 =E= 0;
e49.. x23*x40 - x28*x35 + x29*x34 =E= 0;
e50.. x23*x41 - x28*x36 + x30*x34 =E= 0;
e51.. x23*x42 - x29*x36 + x30*x35 =E= 0;
e52.. x25*x33 - x26*x32 + x27*x31 =E= 0;
e53.. x25*x39 - x26*x38 + x27*x37 =E= 0;
e54.. x25*x40 - x28*x37 + x31*x34 =E= 0;
e55.. x25*x41 - x28*x38 + x32*x34 =E= 0;
e56.. x24*x25 - x31*x38 + x32*x37 =E= 0;
e57.. x26*x40 - x29*x37 + x31*x35 =E= 0;
e58.. x26*x42 - x29*x39 + x33*x35 =E= 0;
e59.. x24*x26 - x31*x39 + x33*x37 =E= 0;
e60.. x27*x41 - x30*x38 + x32*x36 =E= 0;
e61.. x27*x42 - x30*x39 + x33*x36 =E= 0;
e62.. x24*x27 - x32*x39 + x33*x38 =E= 0;
e63.. x28*x33 - x29*x32 + x30*x31 =E= 0;
e64.. x28*x42 - x29*x41 + x30*x40 =E= 0;
e65.. x24*x28 - x31*x41 + x32*x40 =E= 0;
e66.. x24*x29 - x31*x42 + x33*x40 =E= 0;
e67.. x24*x30 - x32*x42 + x33*x41 =E= 0;
e68.. x34*x39 - x35*x38 + x36*x37 =E= 0;
e69.. x34*x42 - x35*x41 + x36*x40 =E= 0;
e70.. x24*x34 - x37*x41 + x38*x40 =E= 0;
e71.. x24*x35 - x37*x42 + x39*x40 =E= 0;
e72.. x24*x36 - x38*x42 + x39*x41 =E= 0;
e73.. x23*x24 - x25*x42 + x26*x41 - x27*x40 =E= 0;
e74.. x23*x24 - x25*x42 + x28*x39 - x33*x34 =E= 0;
e75.. x23*x24 + x26*x41 - x29*x38 + x32*x35 =E= 0;
e76.. x23*x24 - x27*x40 + x30*x37 - x31*x36 =E= 0;
e77.. x23*x24 + x28*x39 - x29*x38 + x30*x37 =E= 0;
e78.. x23*x24 - x31*x36 + x32*x35 - x33*x34 =E= 0;
e79.. x25*x42 - x26*x41 + x30*x37 - x31*x36 =E= 0;
e80.. x25*x42 + x27*x40 - x29*x38 + x32*x35 =E= 0;
e81.. x25*x42 - x28*x39 - x31*x36 + x32*x35 =E= 0;
e82.. x25*x42 - x29*x38 + x30*x37 + x33*x34 =E= 0;
e83.. x26*x41 - x27*x40 - x28*x39 + x33*x34 =E= 0;
e84.. x26*x41 - x28*x39 - x30*x37 + x32*x35 =E= 0;
e85.. x26*x41 - x29*x38 + x31*x36 + x33*x34 =E= 0;
e86.. x27*x40 + x28*x39 - x29*x38 + x31*x36 =E= 0;
e87.. x27*x40 - x30*x37 + x32*x35 - x33*x34 =E= 0;
e88.. - objvar + x23 =L= 0;
e89.. - objvar - x23 =L= 0;
e90.. - objvar + x25 =L= 0;
e91.. - objvar - x25 =L= 0;
e92.. - objvar + x26 =L= 0;
e93.. - objvar - x26 =L= 0;
e94.. - objvar + x27 =L= 0;
e95.. - objvar - x27 =L= 0;
e96.. - objvar + x28 =L= 0;
e97.. - objvar - x28 =L= 0;
e98.. - objvar + x29 =L= 0;
e99.. - objvar - x29 =L= 0;
e100.. - objvar + x30 =L= 0;
e101.. - objvar - x30 =L= 0;
e102.. - objvar + x31 =L= 0;
e103.. - objvar - x31 =L= 0;
e104.. - objvar + x32 =L= 0;
e105.. - objvar - x32 =L= 0;
e106.. - objvar + x33 =L= 0;
e107.. - objvar - x33 =L= 0;
e108.. - objvar + x34 =L= 0;
e109.. - objvar - x34 =L= 0;
e110.. - objvar + x35 =L= 0;
e111.. - objvar - x35 =L= 0;
e112.. - objvar + x36 =L= 0;
e113.. - objvar - x36 =L= 0;
e114.. - objvar + x37 =L= 0;
e115.. - objvar - x37 =L= 0;
e116.. - objvar + x38 =L= 0;
e117.. - objvar - x38 =L= 0;
e118.. - objvar + x39 =L= 0;
e119.. - objvar - x39 =L= 0;
e120.. - objvar + x40 =L= 0;
e121.. - objvar - x40 =L= 0;
e122.. - objvar + x41 =L= 0;
e123.. - objvar - x41 =L= 0;
e124.. - objvar + x42 =L= 0;
e125.. - objvar - x42 =L= 0;
e126.. - objvar + x24 =L= 0;
e127.. - objvar - x24 =L= 0;
* set non-default bounds
objvar.lo = 0;
x2.up = 1;
x3.up = 1;
x4.up = 1;
x5.up = 1;
x6.up = 1;
x7.up = 1;
x8.up = 1;
x9.up = 1;
x10.up = 1;
x11.up = 1;
x12.up = 1;
x13.up = 1;
x14.up = 1;
x15.up = 1;
x16.up = 1;
x17.up = 1;
x18.up = 1;
x19.up = 1;
x20.up = 1;
x21.up = 1;
x22.up = 1;
x23.lo = -1; x23.up = 1;
x24.up = 1;
x25.lo = -1; x25.up = 1;
x26.lo = -1; x26.up = 1;
x27.lo = -1; x27.up = 1;
x28.lo = -1; x28.up = 1;
x29.lo = -1; x29.up = 1;
x30.lo = -1; x30.up = 1;
x31.lo = -1; x31.up = 1;
x32.lo = -1; x32.up = 1;
x33.lo = -1; x33.up = 1;
x34.lo = -1; x34.up = 1;
x35.lo = -1; x35.up = 1;
x36.lo = -1; x36.up = 1;
x37.lo = -1; x37.up = 1;
x38.lo = -1; x38.up = 1;
x39.lo = -1; x39.up = 1;
x40.lo = -1; x40.up = 1;
x41.lo = -1; x41.up = 1;
x42.lo = -1; x42.up = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

