MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sporttournament26
This is a quadratic model for the max-cut problem. The instance arises when minimizing so-called breaks in sports tournaments.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 369.50000000 (ANTIGONE) 342.51051950 (BARON) 394.00000000 (COUENNE) 377.36100990 (CPLEX) 334.00000000 (GUROBI) 358.00000000 (LINDO) 334.00000000 (SCIP) 334.00000000 (SHOT) |
| Referencesⓘ | Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349. |
| Sourceⓘ | POLIP instance maxcut/sched-26-4711 |
| Applicationⓘ | Sports Tournament |
| Added to libraryⓘ | 26 Feb 2014 |
| Problem typeⓘ | MBQCP |
| #Variablesⓘ | 326 |
| #Binary Variablesⓘ | 325 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 325 |
| #Nonlinear Binary Variablesⓘ | 325 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | max |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 326 |
| #Nonlinear Nonzeros in Jacobianⓘ | 325 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1248 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 325 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 325 |
| Average blocksize in Hessian of Lagrangianⓘ | 325.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 4.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 0 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 326 1 325 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 326 1 325 0
*
* Solve m using MINLP maximizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207
,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220
,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233
,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246
,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259
,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272
,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285
,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298
,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310,b311
,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323,b324
,b325,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205
,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218
,b219,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231
,b232,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244
,b245,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257
,b258,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270
,b271,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283
,b284,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296
,b297,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309
,b310,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322
,b323,b324,b325;
Equations e1;
e1.. 2*b1*b2 - 2*b1 - 2*b2 + 2*b1*b136 - 2*b136 + 2*b1*b232 - 2*b1*b236 + 2*b2*
b89 - 4*b89 - 2*b2*b133 + 2*b133 + 2*b2*b233 + 2*b3*b14 - 2*b3 - 2*b14 + 2
*b3*b59 - 2*b59 - 2*b3*b243 + 2*b3*b260 + 2*b4*b78 - 2*b4 - 2*b78 + 2*b4*
b201 - 2*b201 - 2*b4*b255 + 2*b4*b256 - 2*b5*b34 - 2*b5 + 2*b34 + 2*b5*b35
- 2*b35 + 2*b5*b76 - 2*b76 + 2*b5*b248 + 2*b6*b201 - 2*b6 + 2*b6*b240 - 2
*b6*b261 + 2*b6*b262 + 2*b7*b62 - 2*b7 - 2*b62 - 2*b7*b169 + 2*b169 + 2*b7
*b235 + 2*b7*b240 + 2*b8*b11 - 4*b8 - 4*b11 + 2*b8*b15 - 2*b15 + 2*b8*b249
+ 2*b8*b275 + 2*b9*b63 - 2*b9 - 2*b63 + 2*b9*b79 - 2*b79 - 2*b9*b199 + 2*
b199 + 2*b9*b235 - 2*b10*b145 - 2*b10 + 2*b145 + 2*b10*b149 - 2*b149 + 2*
b10*b172 - 4*b172 + 2*b10*b252 + 2*b11*b63 + 2*b11*b97 - 2*b97 + 2*b11*
b241 + 2*b12*b122 - 2*b12 - 2*b122 - 2*b12*b171 + 4*b171 + 2*b12*b204 - 4*
b204 + 2*b12*b245 + 2*b13*b17 - 2*b13 - 2*b17 + 2*b13*b228 - 2*b228 + 2*
b14*b15 + 2*b14*b60 - 2*b60 - 2*b14*b283 + 2*b15*b35 - 2*b15*b169 + 2*b16*
b83 - 2*b16 - 4*b83 + 2*b16*b106 - 2*b106 - 2*b16*b180 + 4*b180 + 2*b16*
b273 + 2*b17*b18 - 2*b18 - 2*b17*b42 - 2*b42 + 2*b17*b56 - 4*b56 + 2*b18*
b22 - 2*b22 - 2*b19*b197 + 2*b19 - 2*b197 - 2*b19*b199 - 2*b19*b260 + 2*
b19*b261 + 2*b20*b107 - 2*b20 - 4*b107 + 2*b20*b127 - 4*b127 - 2*b20*b211
+ 2*b211 + 2*b20*b277 + 2*b21*b30 - 2*b21 - 2*b30 + 2*b21*b40 - 4*b40 - 2
*b21*b68 - 2*b68 + 2*b21*b107 + 2*b22*b23 - 2*b23 - 2*b22*b31 - 2*b31 + 2*
b22*b73 - 4*b73 + 2*b23*b26 - 2*b26 + 2*b24*b68 - 2*b24 + 2*b24*b128 - 4*
b128 + 2*b24*b155 - 4*b155 - 2*b24*b281 + 2*b25*b40 - 2*b25 + 2*b25*b53 -
4*b53 + 2*b25*b128 - 2*b25*b277 + 2*b26*b27 - 2*b27 + 2*b26*b92 - 4*b92 -
2*b26*b288 + 2*b27*b32 - 4*b32 + 2*b28*b83 - 2*b28 + 2*b28*b156 - 2*b156
+ 2*b28*b181 - 4*b181 - 2*b28*b284 + 2*b29*b53 - 2*b29 + 2*b29*b70 - 4*
b70 + 2*b29*b156 - 2*b29*b273 + 2*b30*b216 - 4*b216 - 2*b30*b220 + 2*b220
+ 2*b30*b282 + 2*b31*b43 - 4*b43 + 2*b31*b55 - 4*b55 + 2*b31*b291 + 2*b32
*b33 - 2*b33 + 2*b32*b113 - 4*b113 + 2*b32*b288 + 2*b33*b43 - 2*b34*b295
+ 2*b35*b96 - 2*b96 - 2*b35*b142 - 2*b142 + 2*b36*b37 - 2*b36 - 2*b37 + 2
*b36*b47 - 2*b47 + 2*b36*b101 - 4*b101 - 2*b36*b257 + 2*b37*b48 - 2*b48 +
2*b37*b66 - 2*b66 - 2*b37*b123 - 2*b123 + 2*b38*b107 - 4*b38 + 2*b38*b182
- 2*b182 + 2*b38*b212 - 4*b212 + 2*b38*b284 + 2*b39*b70 - 4*b39 + 2*b39*
b85 - 4*b85 + 2*b39*b182 + 2*b39*b273 + 2*b40*b86 - 4*b86 + 2*b40*b278 + 2
*b41*b42 - 4*b41 + 2*b41*b288 + 2*b41*b294 + 2*b41*b299 + 2*b42*b57 - 4*
b57 + 2*b42*b72 - 4*b72 + 2*b43*b44 - 2*b44 + 2*b43*b137 - 4*b137 + 2*b44*
b57 + 2*b45*b95 - 2*b45 - 2*b95 + 2*b45*b237 + 2*b46*b248 - 2*b46 + 2*b46*
b261 + 2*b46*b262 - 2*b46*b285 + 2*b47*b49 - 4*b49 + 2*b47*b122 - 2*b47*
b152 + 4*b152 + 2*b48*b50 - 4*b50 + 2*b48*b230 - 2*b48*b272 + 2*b49*b50 +
2*b49*b267 + 2*b49*b292 + 2*b50*b154 + 2*b154 + 2*b50*b229 + 2*b51*b128 -
2*b51 + 2*b51*b214 - 2*b214 - 2*b51*b229 + 2*b51*b281 + 2*b52*b85 - 4*b52
+ 2*b52*b109 - 4*b109 + 2*b52*b214 + 2*b52*b277 + 2*b53*b220 + 2*b53*b274
+ 2*b54*b55 - 2*b54 + 2*b54*b223 - 2*b223 + 2*b54*b291 - 2*b54*b303 + 2*
b55*b56 + 2*b55*b90 - 2*b90 + 2*b56*b74 - 4*b74 + 2*b56*b91 - 4*b91 + 2*
b57*b58 - 2*b58 + 2*b57*b226 - 2*b226 + 2*b58*b74 + 2*b59*b116 - 2*b116 +
2*b60*b140 - 2*b140 - 2*b60*b166 + 2*b166 + 2*b60*b243 + 2*b61*b62 - 2*b61
+ 2*b61*b254 + 2*b61*b255 - 2*b61*b289 + 2*b62*b80 - 2*b80 - 2*b62*b305
- 2*b63*b145 + 2*b63*b234 + 2*b64*b80 - 4*b64 + 2*b64*b100 - 2*b100 + 2*
b64*b145 + 2*b64*b249 + 2*b65*b67 - 2*b65 - 4*b67 + 2*b65*b102 - 2*b102 -
2*b65*b178 + 4*b178 + 2*b65*b252 + 2*b66*b251 + 2*b66*b264 - 2*b66*b296 +
2*b67*b230 + 2*b67*b290 + 2*b67*b296 + 2*b68*b69 - 2*b69 + 2*b68*b268 + 2*
b69*b109 + 2*b69*b131 - 4*b131 - 2*b69*b215 - 2*b215 + 2*b70*b270 + 2*b70*
b282 + 2*b71*b86 - 2*b71 + 2*b71*b231 + 2*b71*b247 - 2*b71*b299 + 2*b72*
b73 + 2*b72*b111 - 2*b111 + 2*b72*b299 + 2*b73*b93 - 4*b93 + 2*b73*b112 -
4*b112 + 2*b74*b75 - 2*b75 + 2*b74*b193 - 2*b193 + 2*b75*b93 + 2*b76*b141
- 2*b141 + 2*b77*b79 - 2*b77 - 2*b77*b166 + 2*b77*b250 + 2*b77*b260 + 2*
b78*b96 - 2*b78*b98 - 2*b98 + 2*b78*b283 + 2*b79*b98 - 2*b79*b168 + 2*b168
+ 2*b80*b81 - 2*b81 - 2*b80*b262 + 2*b81*b98 + 2*b81*b120 + 2*b120 - 2*
b81*b171 - 2*b82*b211 + 2*b82 - 2*b82*b259 + 2*b82*b269 - 2*b82*b310 + 2*
b83*b84 - 2*b84 + 2*b83*b216 + 2*b84*b131 + 2*b84*b158 - 4*b158 - 2*b84*
b183 - 2*b183 + 2*b85*b87 - 2*b87 + 2*b85*b278 + 2*b86*b89 + 2*b86*b219 -
4*b219 + 2*b87*b89 + 2*b87*b158 - 2*b87*b222 + 2*b222 - 2*b88*b90 + 2*b88
- 2*b88*b220 - 2*b88*b231 + 2*b88*b242 + 2*b89*b90 + 2*b90*b91 + 2*b91*
b92 + 2*b91*b134 - 2*b134 + 2*b92*b114 - 2*b114 + 2*b92*b135 - 4*b135 + 2*
b93*b94 - 2*b94 + 2*b93*b227 - 2*b227 + 2*b94*b114 + 2*b95*b196 + 2*b196
+ 2*b95*b285 - 2*b95*b300 + 2*b96*b97 - 2*b96*b196 + 2*b97*b118 - 2*b118
- 2*b97*b198 + 2*b198 + 2*b98*b99 - 2*b99 + 2*b99*b118 - 2*b99*b203 + 2*
b203 + 2*b99*b266 + 2*b100*b101 - 2*b100*b144 - 2*b144 + 2*b100*b173 - 2*
b173 + 2*b101*b103 - 2*b103 + 2*b101*b266 + 2*b102*b147 - 2*b147 - 2*b102*
b177 + 2*b177 + 2*b102*b271 + 2*b103*b174 - 2*b174 + 2*b103*b177 - 2*b103*
b292 - 2*b104*b105 + 2*b104 + 2*b105 - 2*b104*b244 + 2*b104*b253 - 2*b104*
b290 + 2*b105*b106 - 2*b105*b281 - 2*b105*b314 - 2*b106*b253 + 2*b106*b315
+ 2*b107*b108 - 2*b108 + 2*b108*b158 + 2*b108*b185 - 4*b185 - 2*b108*b316
+ 2*b109*b110 - 4*b110 + 2*b109*b274 + 2*b110*b185 + 2*b110*b222 + 2*b110
*b307 + 2*b111*b112 - 2*b111*b246 + 2*b111*b307 + 2*b112*b113 + 2*b112*
b162 - 2*b162 + 2*b113*b138 - 2*b138 + 2*b113*b163 - 4*b163 + 2*b114*b115
- 2*b115 - 2*b114*b136 + 2*b115*b138 + 2*b116*b117 - 2*b117 + 2*b116*b166
- 2*b116*b304 + 2*b117*b194 - 2*b194 + 2*b117*b198 - 2*b117*b283 + 2*b118
*b119 - 2*b119 - 2*b118*b250 + 2*b119*b121 - 2*b121 - 2*b119*b286 + 2*b119
*b318 - 2*b120*b235 - 2*b120*b257 - 2*b120*b309 - 2*b121*b201 + 2*b121*
b263 + 2*b121*b309 - 2*b122*b151 + 2*b151 + 2*b122*b173 + 2*b123*b151 + 2*
b123*b206 - 2*b206 + 2*b123*b309 - 2*b124*b125 + 4*b124 + 2*b125 - 2*b124*
b251 - 2*b124*b253 - 2*b124*b287 + 2*b125*b127 - 2*b125*b284 - 2*b125*b320
- 2*b126*b213 + 2*b126 - 2*b213 - 2*b126*b264 - 2*b126*b265 + 2*b126*b296
+ 2*b127*b213 + 2*b127*b253 + 2*b128*b130 - 4*b130 + 2*b129*b130 - 4*b129
+ 2*b129*b213 + 2*b129*b216 + 2*b129*b265 + 2*b130*b185 + 2*b130*b218 - 4
*b218 + 2*b131*b132 - 4*b132 + 2*b131*b270 + 2*b132*b188 + 2*b188 + 2*b132
*b218 + 2*b132*b303 - 2*b133*b134 + 2*b133*b187 - 4*b187 - 2*b133*b278 + 2
*b134*b135 + 2*b134*b303 + 2*b135*b137 + 2*b135*b190 - 2*b190 + 2*b136*
b164 - 4*b164 + 2*b136*b191 - 2*b191 + 2*b137*b164 + 2*b137*b192 - 2*b192
+ 2*b138*b139 - 2*b139 - 2*b138*b232 + 2*b139*b164 + 2*b140*b142 + 2*b141
*b143 - 2*b143 + 2*b141*b289 - 2*b141*b308 + 2*b142*b143 + 2*b142*b308 + 2
*b143*b168 - 2*b143*b279 + 2*b144*b146 - 2*b146 + 2*b144*b318 + 2*b144*
b321 - 2*b145*b148 - 2*b148 + 2*b146*b148 - 2*b146*b256 + 2*b146*b257 - 2*
b147*b150 - 2*b150 + 2*b147*b239 + 2*b147*b286 + 2*b148*b150 + 2*b148*b306
+ 2*b149*b205 + 2*b205 + 2*b149*b251 - 2*b149*b276 + 2*b150*b276 + 2*b150
*b292 - 2*b151*b178 - 2*b151*b320 - 2*b152*b153 - 2*b153 - 2*b152*b177 - 2
*b152*b258 + 2*b153*b155 + 2*b153*b284 + 2*b153*b320 - 2*b154*b267 - 2*
b154*b268 - 2*b154*b302 + 2*b155*b258 + 2*b155*b302 + 2*b156*b157 - 4*b157
- 2*b156*b293 + 2*b157*b159 - 2*b159 + 2*b157*b218 + 2*b157*b316 + 2*b158
*b160 - 4*b160 + 2*b159*b160 + 2*b159*b184 - 4*b184 - 2*b159*b231 + 2*b160
*b161 + 2*b161 + 2*b160*b298 - 2*b161*b162 - 2*b161*b236 - 2*b161*b274 + 2
*b162*b163 + 2*b162*b298 + 2*b163*b224 - 2*b224 + 2*b163*b226 + 2*b164*
b323 + 2*b165*b167 - 2*b165 - 2*b167 - 2*b165*b260 + 2*b165*b304 + 2*b165*
b317 - 2*b166*b305 - 2*b167*b275 + 2*b167*b305 + 2*b167*b311 - 2*b168*b289
- 2*b168*b322 - 2*b169*b200 - 2*b200 + 2*b169*b283 + 2*b170*b172 - 4*b170
+ 2*b170*b200 + 2*b170*b286 + 2*b170*b321 - 2*b171*b174 - 2*b171*b241 + 2
*b172*b174 + 2*b172*b256 - 2*b173*b176 - 2*b176 + 2*b173*b234 + 2*b174*
b176 + 2*b175*b244 - 2*b175 + 2*b175*b257 + 2*b175*b271 - 2*b175*b272 + 2*
b176*b272 + 2*b176*b290 - 2*b177*b314 - 2*b178*b179 - 2*b179 - 2*b178*b264
+ 2*b179*b181 + 2*b179*b281 + 2*b179*b314 - 2*b180*b230 - 2*b180*b296 - 2
*b180*b297 + 2*b181*b264 + 2*b181*b297 + 2*b182*b184 - 2*b182*b297 + 2*
b183*b184 + 2*b183*b297 + 2*b183*b315 + 2*b184*b186 - 4*b186 + 2*b185*b187
+ 2*b186*b187 + 2*b186*b217 - 4*b217 + 2*b186*b231 + 2*b187*b189 - 2*b189
- 2*b188*b190 - 2*b188*b242 - 2*b188*b270 + 2*b189*b190 - 2*b189*b282 + 2
*b189*b294 + 2*b190*b192 - 2*b191*b193 + 2*b191*b236 + 2*b191*b247 + 2*
b192*b193 - 2*b192*b247 + 2*b193*b228 + 2*b194*b197 + 2*b194*b312 - 2*b194
*b317 + 2*b195*b197 - 2*b195 - 2*b195*b254 + 2*b195*b300 + 2*b195*b313 - 2
*b196*b295 - 2*b196*b301 + 2*b197*b301 - 2*b198*b285 - 2*b198*b319 + 2*
b199*b279 - 2*b199*b280 + 2*b200*b202 - 4*b202 + 2*b200*b322 + 2*b201*b204
+ 2*b202*b203 + 2*b202*b204 + 2*b202*b280 - 2*b203*b206 - 2*b203*b271 + 2
*b204*b206 - 2*b205*b207 - 2*b207 - 2*b205*b234 - 2*b205*b286 + 2*b206*
b207 + 2*b207*b208 - 2*b208 + 2*b207*b287 + 2*b208*b209 + 2*b209 - 2*b208*
b245 + 2*b208*b310 - 2*b209*b210 - 2*b210 - 2*b209*b267 - 2*b209*b276 + 2*
b210*b211 + 2*b210*b212 + 2*b210*b310 - 2*b211*b293 + 2*b212*b267 + 2*b212
*b293 + 2*b213*b215 + 2*b214*b217 - 2*b214*b302 + 2*b215*b217 + 2*b215*
b293 + 2*b216*b219 + 2*b217*b219 + 2*b218*b221 - 4*b221 + 2*b219*b221 - 2*
b220*b223 + 2*b221*b223 + 2*b221*b246 - 2*b222*b224 - 2*b222*b247 + 2*b223
*b224 + 2*b224*b225 - 2*b225 + 2*b225*b226 + 2*b225*b227 - 2*b225*b242 - 2
*b226*b324 - 2*b227*b233 + 2*b227*b324 + 2*b228*b232 - 2*b228*b325 - 2*
b229*b230 + 2*b229*b265 - 2*b232*b233 + 2*b233*b242 - 2*b234*b235 + 2*b236
*b246 - 2*b237*b238 - 2*b237*b248 + 2*b237*b254 + 2*b238*b295 - 2*b239*
b240 + 2*b239*b241 - 2*b239*b271 - 2*b240*b266 - 2*b241*b280 - 2*b244*b245
+ 2*b244*b259 + 2*b245*b263 - 2*b246*b282 - 2*b248*b279 - 2*b249*b250 - 2
*b249*b256 + 2*b250*b279 - 2*b251*b252 - 2*b252*b263 - 2*b254*b275 + 2*
b255*b275 - 2*b255*b318 + 2*b258*b259 - 2*b258*b269 - 2*b259*b292 - 2*b261
*b321 - 2*b262*b301 - 2*b263*b266 - 2*b265*b277 + 2*b268*b269 - 2*b268*
b273 - 2*b269*b315 - 2*b270*b307 + 2*b272*b314 - 2*b274*b303 + 2*b276*b320
- 2*b278*b298 + 2*b280*b319 + 2*b285*b311 + 2*b287*b306 - 2*b287*b310 - 2
*b288*b291 + 2*b289*b295 - 2*b290*b306 - 2*b291*b294 - 2*b294*b298 - 2*
b299*b307 + 2*b301*b319 + 2*b302*b316 + 2*b305*b322 - 2*b306*b309 - 2*b311
*b312 - 2*b311*b313 - 2*b315*b316 - 2*b318*b319 - 2*b321*b322 - 2*b323*
b324 + 2*b324*b325 + objvar =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

