MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sssd25-08
Stochastic Service System Design. Servers are modeled as M/M/1 queues, and a set of customers must be assigned to the servers which can be operated at different service levels. The objective is to minimize assignment and operating costs.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 271856.88530000 (ALPHAECP) 472047.21470000 (ANTIGONE) 472093.07800000 (AOA) 472093.07750000 (BARON) 471761.31860000 (BONMIN) 145509.16040000 (COUENNE) 462857.27950000 (LINDO) 472093.06960000 (SCIP) 472093.07800000 (SHOT) |
| Referencesⓘ | Elhedhli, Samir, Service System Design with Immobile Servers, Stochastic Demand, and Congestion, Manufacturing & Service Operations Management, 8:1, 2006, 92-97. Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205. Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89. |
| Applicationⓘ | Service System Design |
| Added to libraryⓘ | 24 Feb 2014 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 256 |
| #Binary Variablesⓘ | 224 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 8 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 232 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 89 |
| #Linear Constraintsⓘ | 65 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 24 |
| Operands in Gen. Nonlin. Functionsⓘ | div |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 544 |
| #Nonlinear Nonzeros in Jacobianⓘ | 24 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 8 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 8 |
| #Blocks in Hessian of Lagrangianⓘ | 8 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.1854e-01 |
| Maximal coefficientⓘ | 9.7792e+04 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 90 34 0 56 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 257 33 224 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 777 753 24 0
*
* Solve m using MINLP minimizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207
,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220
,b221,b222,b223,b224,x225,x226,x227,x228,x229,x230,x231,x232,x233
,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246
,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,objvar;
Positive Variables x225,x226,x227,x228,x229,x230,x231,x232,x233,x234,x235
,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246,x247,x248
,x249,x250,x251,x252,x253,x254,x255,x256;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205
,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218
,b219,b220,b221,b222,b223,b224;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90;
e1.. - 280.015478914038*b1 - 189.288120842359*b2 - 358.701846798178*b3
- 244.241788814099*b4 - 87.1139426934879*b5 - 293.741196412808*b6
- 336.938455480881*b7 - 111.132571007002*b8 - 286.116429243528*b9
- 94.4274398343128*b10 - 367.133290072151*b11 - 614.928585758936*b12
- 438.125051677529*b13 - 661.999904132064*b14 - 653.595947484945*b15
- 130.785249996106*b16 - 566.03927069428*b17 - 544.19787715837*b18
- 685.403607293646*b19 - 61.9928174906746*b20 - 249.350690730561*b21
- 140.90906841319*b22 - 291.079482338546*b23 - 487.780669163489*b24
- 307.783912643805*b25 - 389.802681405466*b26 - 321.287736832449*b27
- 302.412987027206*b28 - 409.775140258547*b29 - 257.071751692557*b30
- 175.756094849851*b31 - 423.669959460143*b32 - 198.720546344334*b33
- 344.400501168956*b34 - 208.952089209986*b35 - 430.759407352372*b36
- 496.60632325866*b37 - 397.911936291162*b38 - 287.774297498385*b39
- 423.00329072926*b40 - 237.886155953882*b41 - 402.402251795838*b42
- 250.825045089316*b43 - 487.547042019378*b44 - 568.292182452832*b45
- 448.087612764076*b46 - 320.335765847799*b47 - 490.167899018651*b48
- 82.5933869454248*b49 - 146.448682875232*b50 - 163.452067908051*b51
- 276.730055005735*b52 - 273.179876407695*b53 - 277.803053042602*b54
- 233.55256356785*b55 - 197.393244057853*b56 - 242.330997032288*b57
- 284.424030137382*b58 - 363.208830908102*b59 - 294.232555311306*b60
- 325.118162311176*b61 - 299.415482100549*b62 - 259.44789476115*b63
- 309.940616688054*b64 - 222.150724870321*b65 - 217.727646620661*b66
- 281.713073665437*b67 - 38.1502291749332*b68 - 111.211204176216*b69
- 65.2805816148505*b70 - 112.460639083103*b71 - 198.645643676751*b72
- 421.360912334564*b73 - 534.87426176758*b74 - 475.741816107137*b75
- 352.749929176345*b76 - 531.612082625615*b77 - 280.525826419076*b78
- 137.095239440206*b79 - 575.7770749398*b80 - 351.497850461778*b81
- 405.962649168703*b82 - 432.857369642276*b83 - 166.720740905278*b84
- 330.52780833779*b85 - 114.389081222937*b86 - 41.8820705320675*b87
- 413.561667150737*b88 - 355.579499050136*b89 - 345.47038524768*b90
- 430.854677384648*b91 - 30.0482829027383*b92 - 165.478010935782*b93
- 77.9360845070815*b94 - 173.890485436882*b95 - 312.249412706219*b96
- 571.744627524166*b97 - 471.624923879672*b98 - 710.164602376854*b99
- 261.66021735256*b100 - 51.0557284250918*b101 - 360.062547274952*b102
- 481.891096039651*b103 - 365.513365723344*b104 - 399.490496656953*b105
- 451.769553607549*b106 - 453.738932169927*b107 - 199.843756585705*b108
- 365.058314613238*b109 - 139.586752483676*b110 - 106.426979864288*b111
- 456.438637193436*b112 - 211.390523065096*b113 - 296.965394771203*b114
- 206.36024981947*b115 - 299.399758359544*b116 - 365.873253476953*b117
- 268.037142407783*b118 - 192.166689939902*b119 - 340.763818025386*b120
- 481.943276793998*b121 - 476.896032723565*b122 - 605.44200242736*b123
- 60.3345060768244*b124 - 248.698186669248*b125 - 116.370732650035*b126
- 226.41276825065*b127 - 437.786018380522*b128 - 30.1659216101491*b129
- 155.310005469338*b130 - 62.4308577168494*b131 - 374.072749206918*b132
- 359.364574319466*b133 - 371.508574814077*b134 - 313.678661245913*b135
- 236.696687500268*b136 - 342.959779885782*b137 - 243.309240877052*b138
- 455.730833322708*b139 - 283.158964050427*b140 - 108.06453872561*b141
- 345.515272872869*b142 - 397.292371711029*b143 - 159.09397067448*b144
- 340.634583609159*b145 - 206.294587181224*b146 - 430.280594816681*b147
- 370.924429483938*b148 - 179.264171022001*b149 - 428.921838070769*b150
- 471.281103740823*b151 - 99.7808461848959*b152 - 429.05922386952*b153
- 327.680298879118*b154 - 523.80193255273*b155 - 283.644715807908*b156
- 86.3875702765374*b157 - 352.398403352795*b158 - 431.172951509966*b159
- 233.993325343613*b160 - 91.8637559279284*b161 - 74.4877021670081*b162
- 187.82221969771*b163 - 430.026945476274*b164 - 357.507784036688*b165
- 448.524700206143*b166 - 411.998956245666*b167 - 173.986760082346*b168
- 712.788231206667*b169 - 461.036283507276*b170 - 848.881524448158*b171
- 792.186240949472*b172 - 442.016565853182*b173 - 897.591929381804*b174
- 977.916607937591*b175 - 293.430402870014*b176 - 296.344320059065*b177
- 364.765594186771*b178 - 329.815794036051*b179 - 226.890063118006*b180
- 348.731381211396*b181 - 177.942341296454*b182 - 96.1183797630128*b183
- 387.154702581006*b184 - 375.426218481344*b185 - 391.26936411233*b186
- 451.354346179335*b187 - 63.5187751545787*b188 - 243.436478427032*b189
- 13.2008683362507*b190 - 119.70059288035*b191 - 372.810300964428*b192
- 541.819732823667*b193 - 384.192269657313*b194 - 642.582705586696*b195
- 495.331779409205*b196 - 251.913229553801*b197 - 573.728023842047*b198
- 649.809996665778*b199 - 263.33328155498*b200 - 308.75573475*b201
- 117.915710216419*b202 - 77.288604398212*b203 - 343.15653775*b204
- 134.206428189155*b205 - 89.0183352697708*b206 - 346.81576575*b207
- 124.324585731045*b208 - 78.9498261215339*b209 - 430.096916*b210
- 159.051822644712*b211 - 102.5864677272*b212 - 320.07779375*b213
- 124.923391537198*b214 - 82.7758203632668*b215 - 435.247357*b216
- 157.010160043992*b217 - 100.02041833951*b218 - 449.605928*b219
- 160.64955939217*b220 - 101.851712426192*b221 - 467.05921525*b222
- 164.49253653471*b223 - 103.53764225876*b224 - 97791.6607937591*x225
- 97791.6607937591*x226 - 97791.6607937591*x227 - 97791.6607937591*x228
- 97791.6607937591*x229 - 97791.6607937591*x230 - 97791.6607937591*x231
- 97791.6607937591*x232 + objvar =E= 0;
e2.. 0.702116132*b1 + 1.146214016*b9 + 1.057594812*b17 + 0.578586645*b25
+ 0.886844823*b33 + 1.009856519*b41 + 0.734231906*b49 + 1.097667431*b57
+ 0.530191888*b65 + 0.982025936*b73 + 0.89025893*b81 + 0.672977112*b89
+ 1.170284932*b97 + 0.698680975*b105 + 0.518537857*b113 + 1.10995052*b121
+ 0.728712913*b129 + 0.970767027*b137 + 0.868933215*b145
+ 0.827259074*b153 + 0.935216386*b161 + 1.484063515*b169
+ 0.608384089*b177 + 0.739092857*b185 + 0.992346352*b193
- 2.14967788359375*x233 - 4.2993557671875*x234 - 6.44903365078125*x235
=E= 0;
e3.. 0.702116132*b2 + 1.146214016*b10 + 1.057594812*b18 + 0.578586645*b26
+ 0.886844823*b34 + 1.009856519*b42 + 0.734231906*b50 + 1.097667431*b58
+ 0.530191888*b66 + 0.982025936*b74 + 0.89025893*b82 + 0.672977112*b90
+ 1.170284932*b98 + 0.698680975*b106 + 0.518537857*b114 + 1.10995052*b122
+ 0.728712913*b130 + 0.970767027*b138 + 0.868933215*b146
+ 0.827259074*b154 + 0.935216386*b162 + 1.484063515*b170
+ 0.608384089*b178 + 0.739092857*b186 + 0.992346352*b194
- 2.56580796953125*x236 - 5.1316159390625*x237 - 7.69742390859375*x238
=E= 0;
e4.. 0.702116132*b3 + 1.146214016*b11 + 1.057594812*b19 + 0.578586645*b27
+ 0.886844823*b35 + 1.009856519*b43 + 0.734231906*b51 + 1.097667431*b59
+ 0.530191888*b67 + 0.982025936*b75 + 0.89025893*b83 + 0.672977112*b91
+ 1.170284932*b99 + 0.698680975*b107 + 0.518537857*b115 + 1.10995052*b123
+ 0.728712913*b131 + 0.970767027*b139 + 0.868933215*b147
+ 0.827259074*b155 + 0.935216386*b163 + 1.484063515*b171
+ 0.608384089*b179 + 0.739092857*b187 + 0.992346352*b195 - 1.9969216*x239
- 3.9938432*x240 - 5.9907648*x241 =E= 0;
e5.. 0.702116132*b4 + 1.146214016*b12 + 1.057594812*b20 + 0.578586645*b28
+ 0.886844823*b36 + 1.009856519*b44 + 0.734231906*b52 + 1.097667431*b60
+ 0.530191888*b68 + 0.982025936*b76 + 0.89025893*b84 + 0.672977112*b92
+ 1.170284932*b100 + 0.698680975*b108 + 0.518537857*b116
+ 1.10995052*b124 + 0.728712913*b132 + 0.970767027*b140
+ 0.868933215*b148 + 0.827259074*b156 + 0.935216386*b164
+ 1.484063515*b172 + 0.608384089*b180 + 0.739092857*b188
+ 0.992346352*b196 - 2.71876277421875*x242 - 5.4375255484375*x243
- 8.15628832265625*x244 =E= 0;
e6.. 0.702116132*b5 + 1.146214016*b13 + 1.057594812*b21 + 0.578586645*b29
+ 0.886844823*b37 + 1.009856519*b45 + 0.734231906*b53 + 1.097667431*b61
+ 0.530191888*b69 + 0.982025936*b77 + 0.89025893*b85 + 0.672977112*b93
+ 1.170284932*b101 + 0.698680975*b109 + 0.518537857*b117
+ 1.10995052*b125 + 0.728712913*b133 + 0.970767027*b141
+ 0.868933215*b149 + 0.827259074*b157 + 0.935216386*b165
+ 1.484063515*b173 + 0.608384089*b181 + 0.739092857*b189
+ 0.992346352*b197 - 2.37853163984375*x245 - 4.7570632796875*x246
- 7.13559491953125*x247 =E= 0;
e7.. 0.702116132*b6 + 1.146214016*b14 + 1.057594812*b22 + 0.578586645*b30
+ 0.886844823*b38 + 1.009856519*b46 + 0.734231906*b54 + 1.097667431*b62
+ 0.530191888*b70 + 0.982025936*b78 + 0.89025893*b86 + 0.672977112*b94
+ 1.170284932*b102 + 0.698680975*b110 + 0.518537857*b118
+ 1.10995052*b126 + 0.728712913*b134 + 0.970767027*b142
+ 0.868933215*b150 + 0.827259074*b158 + 0.935216386*b166
+ 1.484063515*b174 + 0.608384089*b182 + 0.739092857*b190
+ 0.992346352*b198 - 2.55386938125*x248 - 5.1077387625*x249
- 7.66160814375*x250 =E= 0;
e8.. 0.702116132*b7 + 1.146214016*b15 + 1.057594812*b23 + 0.578586645*b31
+ 0.886844823*b39 + 1.009856519*b47 + 0.734231906*b55 + 1.097667431*b63
+ 0.530191888*b71 + 0.982025936*b79 + 0.89025893*b87 + 0.672977112*b95
+ 1.170284932*b103 + 0.698680975*b111 + 0.518537857*b119
+ 1.10995052*b127 + 0.728712913*b135 + 0.970767027*b143
+ 0.868933215*b151 + 0.827259074*b159 + 0.935216386*b167
+ 1.484063515*b175 + 0.608384089*b183 + 0.739092857*b191
+ 0.992346352*b199 - 2.5636700640625*x251 - 5.127340128125*x252
- 7.6910101921875*x253 =E= 0;
e9.. 0.702116132*b8 + 1.146214016*b16 + 1.057594812*b24 + 0.578586645*b32
+ 0.886844823*b40 + 1.009856519*b48 + 0.734231906*b56 + 1.097667431*b64
+ 0.530191888*b72 + 0.982025936*b80 + 0.89025893*b88 + 0.672977112*b96
+ 1.170284932*b104 + 0.698680975*b112 + 0.518537857*b120
+ 1.10995052*b128 + 0.728712913*b136 + 0.970767027*b144
+ 0.868933215*b152 + 0.827259074*b160 + 0.935216386*b168
+ 1.484063515*b176 + 0.608384089*b184 + 0.739092857*b192
+ 0.992346352*b200 - 2.55024607265625*x254 - 5.1004921453125*x255
- 7.65073821796875*x256 =E= 0;
e10.. b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 =E= 1;
e11.. b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16 =E= 1;
e12.. b17 + b18 + b19 + b20 + b21 + b22 + b23 + b24 =E= 1;
e13.. b25 + b26 + b27 + b28 + b29 + b30 + b31 + b32 =E= 1;
e14.. b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1;
e15.. b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 =E= 1;
e16.. b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 =E= 1;
e17.. b57 + b58 + b59 + b60 + b61 + b62 + b63 + b64 =E= 1;
e18.. b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 =E= 1;
e19.. b73 + b74 + b75 + b76 + b77 + b78 + b79 + b80 =E= 1;
e20.. b81 + b82 + b83 + b84 + b85 + b86 + b87 + b88 =E= 1;
e21.. b89 + b90 + b91 + b92 + b93 + b94 + b95 + b96 =E= 1;
e22.. b97 + b98 + b99 + b100 + b101 + b102 + b103 + b104 =E= 1;
e23.. b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 =E= 1;
e24.. b113 + b114 + b115 + b116 + b117 + b118 + b119 + b120 =E= 1;
e25.. b121 + b122 + b123 + b124 + b125 + b126 + b127 + b128 =E= 1;
e26.. b129 + b130 + b131 + b132 + b133 + b134 + b135 + b136 =E= 1;
e27.. b137 + b138 + b139 + b140 + b141 + b142 + b143 + b144 =E= 1;
e28.. b145 + b146 + b147 + b148 + b149 + b150 + b151 + b152 =E= 1;
e29.. b153 + b154 + b155 + b156 + b157 + b158 + b159 + b160 =E= 1;
e30.. b161 + b162 + b163 + b164 + b165 + b166 + b167 + b168 =E= 1;
e31.. b169 + b170 + b171 + b172 + b173 + b174 + b175 + b176 =E= 1;
e32.. b177 + b178 + b179 + b180 + b181 + b182 + b183 + b184 =E= 1;
e33.. b185 + b186 + b187 + b188 + b189 + b190 + b191 + b192 =E= 1;
e34.. b193 + b194 + b195 + b196 + b197 + b198 + b199 + b200 =E= 1;
e35.. b201 + b202 + b203 =L= 1;
e36.. b204 + b205 + b206 =L= 1;
e37.. b207 + b208 + b209 =L= 1;
e38.. b210 + b211 + b212 =L= 1;
e39.. b213 + b214 + b215 =L= 1;
e40.. b216 + b217 + b218 =L= 1;
e41.. b219 + b220 + b221 =L= 1;
e42.. b222 + b223 + b224 =L= 1;
e43.. - b201 + x233 =L= 0;
e44.. - b202 + x234 =L= 0;
e45.. - b203 + x235 =L= 0;
e46.. - b204 + x236 =L= 0;
e47.. - b205 + x237 =L= 0;
e48.. - b206 + x238 =L= 0;
e49.. - b207 + x239 =L= 0;
e50.. - b208 + x240 =L= 0;
e51.. - b209 + x241 =L= 0;
e52.. - b210 + x242 =L= 0;
e53.. - b211 + x243 =L= 0;
e54.. - b212 + x244 =L= 0;
e55.. - b213 + x245 =L= 0;
e56.. - b214 + x246 =L= 0;
e57.. - b215 + x247 =L= 0;
e58.. - b216 + x248 =L= 0;
e59.. - b217 + x249 =L= 0;
e60.. - b218 + x250 =L= 0;
e61.. - b219 + x251 =L= 0;
e62.. - b220 + x252 =L= 0;
e63.. - b221 + x253 =L= 0;
e64.. - b222 + x254 =L= 0;
e65.. - b223 + x255 =L= 0;
e66.. - b224 + x256 =L= 0;
e67.. -x225/(1 + x225) + x233 =L= 0;
e68.. -x225/(1 + x225) + x234 =L= 0;
e69.. -x225/(1 + x225) + x235 =L= 0;
e70.. -x226/(1 + x226) + x236 =L= 0;
e71.. -x226/(1 + x226) + x237 =L= 0;
e72.. -x226/(1 + x226) + x238 =L= 0;
e73.. -x227/(1 + x227) + x239 =L= 0;
e74.. -x227/(1 + x227) + x240 =L= 0;
e75.. -x227/(1 + x227) + x241 =L= 0;
e76.. -x228/(1 + x228) + x242 =L= 0;
e77.. -x228/(1 + x228) + x243 =L= 0;
e78.. -x228/(1 + x228) + x244 =L= 0;
e79.. -x229/(1 + x229) + x245 =L= 0;
e80.. -x229/(1 + x229) + x246 =L= 0;
e81.. -x229/(1 + x229) + x247 =L= 0;
e82.. -x230/(1 + x230) + x248 =L= 0;
e83.. -x230/(1 + x230) + x249 =L= 0;
e84.. -x230/(1 + x230) + x250 =L= 0;
e85.. -x231/(1 + x231) + x251 =L= 0;
e86.. -x231/(1 + x231) + x252 =L= 0;
e87.. -x231/(1 + x231) + x253 =L= 0;
e88.. -x232/(1 + x232) + x254 =L= 0;
e89.. -x232/(1 + x232) + x255 =L= 0;
e90.. -x232/(1 + x232) + x256 =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

