MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance: st_e02

Formats ams gms lp mod nl osil pip
Primal Bounds (infeas ≤ 1e-08)
201.15933410 p1 ( gdx sol )
(infeas: 6e-14)
Other points (infeas > 1e-08)  
Dual Bounds
201.15933390 (ANTIGONE)
201.15933370 (BARON)
201.15933390 (COUENNE)
201.15933410 (LINDO)
201.15933410 (SCIP)
References Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002.
Stoecker, W F, Design of Thermal Systems, McGraw Hill Book Co., New York, 1971.
Source BARON book instance misc/e02
Added to library 03 Sep 2002
Problem type QCP
#Variables 3
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 3
#Linear Constraints 0
#Quadratic Constraints 3
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 7
#Nonlinear Nonzeros in Jacobian 4
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Infeasibility of initial point 300
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          4        4        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          4        4        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          9        5        4        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,objvar;

Positive Variables  x1,x2,x3;

Equations  e1,e2,e3,e4;


e1.. 30*x1 - 6*x1*x1 - x3 =E= -250;

e2.. 20*x2 - 12*x2*x2 - x3 =E= -300;

e3.. 0.5*sqr(x1 + x2) - x3 =E= -150;

e4..  - x3 + objvar =E= 0;

* set non-default bounds
x1.up = 9.422;
x2.up = 5.9023;
x3.up = 267.417085245;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2019-06-04 Git hash: 78444eaa
Imprint / Privacy Policy