MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterund01
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 86.26440246 (ANTIGONE) 86.78902985 (BARON) 86.40709882 (COUENNE) 86.83333333 (GUROBI) 86.50222104 (LINDO) 86.82971650 (SCIP) |
| Referencesⓘ | Castro, Pedro M and Teles, João P, Comparison of global optimization algorithms for the design of water-using networks, Computers and Chemical Engineering, 52, 2013, 249-261. Teles, João P, Castro, Pedro M, and Novais, Augusto Q, LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants, Chemical Engineering Science, 63:2, 2008, 376-394. Teles, João P, Castro, Pedro M, and Matos, Henrique A, Global optimization of water networks design using multiparametric disaggregation, Computers and Chemical Engineering 40, 2012, 132-147. |
| Sourceⓘ | ANTIGONE test library model Other_MIQCQP/teles_etal_2009_WUN_Ex01.gms |
| Applicationⓘ | Water Network Design |
| Added to libraryⓘ | 15 Aug 2014 |
| Problem typeⓘ | QCP |
| #Variablesⓘ | 40 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 27 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 4 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 38 |
| #Linear Constraintsⓘ | 24 |
| #Quadratic Constraintsⓘ | 14 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 148 |
| #Nonlinear Nonzeros in Jacobianⓘ | 78 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 72 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 3 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 9 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
| Average blocksize in Hessian of Lagrangianⓘ | 9.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 2.5000e+02 |
| Infeasibility of initial pointⓘ | 1.845e+04 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 39 21 2 16 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 41 41 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 153 75 78 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
,x36,x37,x38,x39,x40,x41;
Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
,x35,x36,x37,x38,x39,x40,x41;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39;
e1.. objvar - x2 - x3 - x4 - x5 =E= 0;
e2.. - x2 + x6 - x14 - x18 - x22 - x26 =E= 0;
e3.. - x3 + x7 - x15 - x19 - x23 - x27 =E= 0;
e4.. - x4 + x8 - x16 - x20 - x24 - x28 =E= 0;
e5.. - x5 - x17 - x21 - x25 - x29 =E= -70;
e6.. x6 - x10 - x14 - x15 - x16 - x17 =E= 0;
e7.. x7 - x11 - x18 - x19 - x20 - x21 =E= 0;
e8.. x8 - x12 - x22 - x23 - x24 - x25 =E= 0;
e9.. - x13 - x26 - x27 - x28 - x29 =E= -60;
e10.. x6*x30 - (x14*x36 + x18*x38 + x22*x40) - 250*x26 =E= 0;
e11.. x6*x31 - (x14*x37 + x18*x39 + x22*x41) - 100*x26 =E= 0;
e12.. x7*x32 - (x15*x36 + x19*x38 + x23*x40) - 250*x27 =E= 0;
e13.. x7*x33 - (x15*x37 + x19*x39 + x23*x41) - 100*x27 =E= 0;
e14.. x8*x34 - (x16*x36 + x20*x38 + x24*x40) - 250*x28 =E= 0;
e15.. x8*x35 - (x16*x37 + x20*x39 + x24*x41) - 100*x28 =E= 0;
e16.. -x6*(x36 - x30) =E= -690;
e17.. -x6*(x37 - x31) =E= -1380;
e18.. -x7*(x38 - x32) =E= -2350;
e19.. -x7*(x39 - x33) =E= -2820;
e20.. -x8*(x40 - x34) =E= -6150;
e21.. -x8*(x41 - x35) =E= -18450;
e22.. x30 =L= 20;
e23.. x31 =L= 60;
e24.. x32 =L= 50;
e25.. x33 =L= 20;
e26.. x34 =L= 100;
e27.. x35 =L= 150;
e28.. x36 =L= 50;
e29.. x37 =L= 120;
e30.. x38 =L= 100;
e31.. x39 =L= 80;
e32.. x40 =L= 150;
e33.. x41 =L= 300;
e34.. -(x17*x36 + x21*x38 + x25*x40) - 250*x29 =G= -14000;
e35.. -(x17*x37 + x21*x39 + x25*x41) - 100*x29 =G= -5600;
e36.. x6 =L= 23;
e37.. x7 =L= 47;
e38.. x8 =L= 123;
e39.. x9 =L= 0;
* set non-default bounds
x2.up = 100000;
x3.up = 100000;
x4.up = 100000;
x5.up = 100000;
x6.up = 100000;
x7.up = 100000;
x8.up = 100000;
x9.up = 100000;
x10.up = 100000;
x11.up = 100000;
x12.up = 100000;
x13.up = 100000;
x14.up = 100000;
x15.up = 100000;
x16.up = 100000;
x17.up = 100000;
x18.up = 100000;
x19.up = 100000;
x20.up = 100000;
x21.up = 100000;
x22.up = 100000;
x23.up = 100000;
x24.up = 100000;
x25.up = 100000;
x26.up = 100000;
x27.up = 100000;
x28.up = 100000;
x29.up = 100000;
x30.up = 100000;
x31.up = 100000;
x32.up = 100000;
x33.up = 100000;
x34.up = 100000;
x35.up = 100000;
x36.up = 100000;
x37.up = 100000;
x38.up = 100000;
x39.up = 100000;
x40.up = 100000;
x41.up = 100000;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

