MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterund22
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 323.42137240 (ANTIGONE) 317.74755370 (BARON) 320.57744880 (COUENNE) 323.50463210 (GUROBI) 316.62231920 (LINDO) 323.48023950 (SCIP) 10.00000000 (SHOT) |
| Referencesⓘ | Castro, Pedro M and Teles, João P, Comparison of global optimization algorithms for the design of water-using networks, Computers and Chemical Engineering, 52, 2013, 249-261. Teles, João P, Castro, Pedro M, and Novais, Augusto Q, LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants, Chemical Engineering Science, 63:2, 2008, 376-394. Teles, João P, Castro, Pedro M, and Matos, Henrique A, Global optimization of water networks design using multiparametric disaggregation, Computers and Chemical Engineering 40, 2012, 132-147. |
| Sourceⓘ | ANTIGONE test library model Other_MIQCQP/teles_etal_2009_WUN_Ex22.gms |
| Applicationⓘ | Water Network Design |
| Added to libraryⓘ | 15 Aug 2014 |
| Problem typeⓘ | QCP |
| #Variablesⓘ | 146 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 80 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 35 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 135 |
| #Linear Constraintsⓘ | 69 |
| #Quadratic Constraintsⓘ | 66 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 981 |
| #Nonlinear Nonzeros in Jacobianⓘ | 456 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 432 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 4 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 20 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 20 |
| Average blocksize in Hessian of Lagrangianⓘ | 20.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 5.0500e+02 |
| Infeasibility of initial pointⓘ | 4.76e+04 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 136 63 18 55 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 147 147 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 1017 561 456 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86
,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
,x142,x143,x144,x145,x146,x147;
Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85
,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101
,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114
,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127
,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140
,x141,x142,x143,x144,x145,x146,x147;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136;
e1.. objvar - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 - x11 - x12 - x13
- x14 - x15 - x16 - x17 - x18 - x19 - x20 - x21 - x22 - x23 - x24 - x25
- x26 - x27 - x28 - x29 - x30 - x31 - x32 - x33 - x34 - x35 - x36 =E= 0;
e2.. - x2 - x9 - x16 - x23 - x30 + x37 - x51 - x58 - x65 - x72 - x79 - x86
- x93 =E= 0;
e3.. - x3 - x10 - x17 - x24 - x31 + x38 - x52 - x59 - x66 - x73 - x80 - x87
- x94 =E= 0;
e4.. - x4 - x11 - x18 - x25 - x32 + x39 - x53 - x60 - x67 - x74 - x81 - x88
- x95 =E= 0;
e5.. - x5 - x12 - x19 - x26 - x33 + x40 - x54 - x61 - x68 - x75 - x82 - x89
- x96 =E= 0;
e6.. - x6 - x13 - x20 - x27 - x34 - x55 - x62 - x69 - x76 - x83 - x90 - x97
=E= -80;
e7.. - x7 - x14 - x21 - x28 - x35 - x56 - x63 - x70 - x77 - x84 - x91 - x98
=E= -80;
e8.. - x8 - x15 - x22 - x29 - x36 - x57 - x64 - x71 - x78 - x85 - x92 - x99
=E= -70;
e9.. x37 - x44 - x51 - x52 - x53 - x54 - x55 - x56 - x57 =E= 0;
e10.. x38 - x45 - x58 - x59 - x60 - x61 - x62 - x63 - x64 =E= 0;
e11.. x39 - x46 - x65 - x66 - x67 - x68 - x69 - x70 - x71 =E= 0;
e12.. x40 - x47 - x72 - x73 - x74 - x75 - x76 - x77 - x78 =E= 0;
e13.. - x48 - x79 - x80 - x81 - x82 - x83 - x84 - x85 =E= -30;
e14.. - x49 - x86 - x87 - x88 - x89 - x90 - x91 - x92 =E= -100;
e15.. - x50 - x93 - x94 - x95 - x96 - x97 - x98 - x99 =E= -90;
e16.. x37*x100 - (x51*x124 + x58*x130 + x65*x136 + x72*x142) - x2 - 6*x9
- 4*x16 - 7*x23 - 6*x30 - 421*x79 - 112*x86 - 491*x93 =E= 0;
e17.. x37*x101 - (x51*x125 + x58*x131 + x65*x137 + x72*x143) - 2*x2 - 2*x9
- 8*x16 - 9*x23 - 9*x30 - 316*x79 - 429*x86 - 476*x93 =E= 0;
e18.. x37*x102 - (x51*x126 + x58*x132 + x65*x138 + x72*x144) - 2*x2 - 2*x9
- 6*x16 - 5*x23 - 2*x30 - 391*x79 - 505*x86 - 197*x93 =E= 0;
e19.. x37*x103 - (x51*x127 + x58*x133 + x65*x139 + x72*x145) - 5*x2 - 3*x9
- 3*x16 - x23 - x30 - 352*x79 - 266*x86 - 493*x93 =E= 0;
e20.. x37*x104 - (x51*x128 + x58*x134 + x65*x140 + x72*x146) - 2*x2 - 6*x9
- 2*x16 - x23 - 6*x30 - 461*x79 - 481*x86 - 399*x93 =E= 0;
e21.. x37*x105 - (x51*x129 + x58*x135 + x65*x141 + x72*x147) - 10*x2 - x16
- 4*x30 - 489*x79 - 505*x86 - 495*x93 =E= 0;
e22.. x38*x106 - (x52*x124 + x59*x130 + x66*x136 + x73*x142) - x3 - 6*x10
- 4*x17 - 7*x24 - 6*x31 - 421*x80 - 112*x87 - 491*x94 =E= 0;
e23.. x38*x107 - (x52*x125 + x59*x131 + x66*x137 + x73*x143) - 2*x3 - 2*x10
- 8*x17 - 9*x24 - 9*x31 - 316*x80 - 429*x87 - 476*x94 =E= 0;
e24.. x38*x108 - (x52*x126 + x59*x132 + x66*x138 + x73*x144) - 2*x3 - 2*x10
- 6*x17 - 5*x24 - 2*x31 - 391*x80 - 505*x87 - 197*x94 =E= 0;
e25.. x38*x109 - (x52*x127 + x59*x133 + x66*x139 + x73*x145) - 5*x3 - 3*x10
- 3*x17 - x24 - x31 - 352*x80 - 266*x87 - 493*x94 =E= 0;
e26.. x38*x110 - (x52*x128 + x59*x134 + x66*x140 + x73*x146) - 2*x3 - 6*x10
- 2*x17 - x24 - 6*x31 - 461*x80 - 481*x87 - 399*x94 =E= 0;
e27.. x38*x111 - (x52*x129 + x59*x135 + x66*x141 + x73*x147) - 10*x3 - x17
- 4*x31 - 489*x80 - 505*x87 - 495*x94 =E= 0;
e28.. x39*x112 - (x53*x124 + x60*x130 + x67*x136 + x74*x142) - x4 - 6*x11
- 4*x18 - 7*x25 - 6*x32 - 421*x81 - 112*x88 - 491*x95 =E= 0;
e29.. x39*x113 - (x53*x125 + x60*x131 + x67*x137 + x74*x143) - 2*x4 - 2*x11
- 8*x18 - 9*x25 - 9*x32 - 316*x81 - 429*x88 - 476*x95 =E= 0;
e30.. x39*x114 - (x53*x126 + x60*x132 + x67*x138 + x74*x144) - 2*x4 - 2*x11
- 6*x18 - 5*x25 - 2*x32 - 391*x81 - 505*x88 - 197*x95 =E= 0;
e31.. x39*x115 - (x53*x127 + x60*x133 + x67*x139 + x74*x145) - 5*x4 - 3*x11
- 3*x18 - x25 - x32 - 352*x81 - 266*x88 - 493*x95 =E= 0;
e32.. x39*x116 - (x53*x128 + x60*x134 + x67*x140 + x74*x146) - 2*x4 - 6*x11
- 2*x18 - x25 - 6*x32 - 461*x81 - 481*x88 - 399*x95 =E= 0;
e33.. x39*x117 - (x53*x129 + x60*x135 + x67*x141 + x74*x147) - 10*x4 - x18
- 4*x32 - 489*x81 - 505*x88 - 495*x95 =E= 0;
e34.. x40*x118 - (x54*x124 + x61*x130 + x68*x136 + x75*x142) - x5 - 6*x12
- 4*x19 - 7*x26 - 6*x33 - 421*x82 - 112*x89 - 491*x96 =E= 0;
e35.. x40*x119 - (x54*x125 + x61*x131 + x68*x137 + x75*x143) - 2*x5 - 2*x12
- 8*x19 - 9*x26 - 9*x33 - 316*x82 - 429*x89 - 476*x96 =E= 0;
e36.. x40*x120 - (x54*x126 + x61*x132 + x68*x138 + x75*x144) - 2*x5 - 2*x12
- 6*x19 - 5*x26 - 2*x33 - 391*x82 - 505*x89 - 197*x96 =E= 0;
e37.. x40*x121 - (x54*x127 + x61*x133 + x68*x139 + x75*x145) - 5*x5 - 3*x12
- 3*x19 - x26 - x33 - 352*x82 - 266*x89 - 493*x96 =E= 0;
e38.. x40*x122 - (x54*x128 + x61*x134 + x68*x140 + x75*x146) - 2*x5 - 6*x12
- 2*x19 - x26 - 6*x33 - 461*x82 - 481*x89 - 399*x96 =E= 0;
e39.. x40*x123 - (x54*x129 + x61*x135 + x68*x141 + x75*x147) - 10*x5 - x19
- 4*x33 - 489*x82 - 505*x89 - 495*x96 =E= 0;
e40.. -x37*(x124 - x100) =E= -19900;
e41.. -x37*(x125 - x101) =E= -1700;
e42.. -x37*(x126 - x102) =E= -19700;
e43.. -x37*(x127 - x103) =E= -18600;
e44.. -x37*(x128 - x104) =E= -47600;
e45.. -x37*(x129 - x105) =E= -7300;
e46.. -x38*(x130 - x106) =E= -6700;
e47.. -x38*(x131 - x107) =E= -4300;
e48.. -x38*(x132 - x108) =E= -7700;
e49.. -x38*(x133 - x109) =E= -20800;
e50.. -x38*(x134 - x110) =E= -5000;
e51.. -x38*(x135 - x111) =E= -13600;
e52.. -x39*(x136 - x112) =E= -8640;
e53.. -x39*(x137 - x113) =E= -640;
e54.. -x39*(x138 - x114) =E= -2000;
e55.. -x39*(x139 - x115) =E= -600;
e56.. -x39*(x140 - x116) =E= -7040;
e57.. -x39*(x141 - x117) =E= -2480;
e58.. -x40*(x142 - x118) =E= -12240;
e59.. -x40*(x143 - x119) =E= -12420;
e60.. -x40*(x144 - x120) =E= -3150;
e61.. -x40*(x145 - x121) =E= -14400;
e62.. -x40*(x146 - x122) =E= -810;
e63.. -x40*(x147 - x123) =E= -15660;
e64.. x100 =L= 65;
e65.. x101 =L= 465;
e66.. x102 =L= 166;
e67.. x103 =L= 56;
e68.. x104 =L= 33;
e69.. x105 =L= 346;
e70.. x106 =L= 448;
e71.. x107 =L= 414;
e72.. x108 =L= 268;
e73.. x109 =L= 191;
e74.. x110 =L= 350;
e75.. x111 =L= 243;
e76.. x112 =L= 171;
e77.. x113 =L= 496;
e78.. x114 =L= 406;
e79.. x115 =L= 486;
e80.. x116 =L= 323;
e81.. x117 =L= 355;
e82.. x118 =L= 139;
e83.. x119 =L= 211;
e84.. x120 =L= 469;
e85.. x121 =L= 65;
e86.. x122 =L= 259;
e87.. x123 =L= 328;
e88.. x124 =L= 264;
e89.. x125 =L= 482;
e90.. x126 =L= 363;
e91.. x127 =L= 242;
e92.. x128 =L= 509;
e93.. x129 =L= 419;
e94.. x130 =L= 515;
e95.. x131 =L= 457;
e96.. x132 =L= 345;
e97.. x133 =L= 399;
e98.. x134 =L= 400;
e99.. x135 =L= 379;
e100.. x136 =L= 387;
e101.. x137 =L= 512;
e102.. x138 =L= 456;
e103.. x139 =L= 501;
e104.. x140 =L= 499;
e105.. x141 =L= 417;
e106.. x142 =L= 275;
e107.. x143 =L= 349;
e108.. x144 =L= 504;
e109.. x145 =L= 225;
e110.. x146 =L= 268;
e111.. x147 =L= 502;
e112.. -(x55*x124 + x62*x130 + x69*x136 + x76*x142) - x6 - 6*x13 - 4*x20
- 7*x27 - 6*x34 - 421*x83 - 112*x90 - 491*x97 =G= -25520;
e113.. -(x55*x125 + x62*x131 + x69*x137 + x76*x143) - 2*x6 - 2*x13 - 8*x20
- 9*x27 - 9*x34 - 316*x83 - 429*x90 - 476*x97 =G= -24240;
e114.. -(x55*x126 + x62*x132 + x69*x138 + x76*x144) - 2*x6 - 2*x13 - 6*x20
- 5*x27 - 2*x34 - 391*x83 - 505*x90 - 197*x97 =G= -18320;
e115.. -(x55*x127 + x62*x133 + x69*x139 + x76*x145) - 5*x6 - 3*x13 - 3*x20
- x27 - x34 - 352*x83 - 266*x90 - 493*x97 =G= -23680;
e116.. -(x55*x128 + x62*x134 + x69*x140 + x76*x146) - 2*x6 - 6*x13 - 2*x20
- x27 - 6*x34 - 461*x83 - 481*x90 - 399*x97 =G= -1040;
e117.. -(x55*x129 + x62*x135 + x69*x141 + x76*x147) - 10*x6 - x20 - 4*x34
- 489*x83 - 505*x90 - 495*x97 =G= -36320;
e118.. -(x56*x124 + x63*x130 + x70*x136 + x77*x142) - x7 - 6*x14 - 4*x21
- 7*x28 - 6*x35 - 421*x84 - 112*x91 - 491*x98 =G= -3440;
e119.. -(x56*x125 + x63*x131 + x70*x137 + x77*x143) - 2*x7 - 2*x14 - 8*x21
- 9*x28 - 9*x35 - 316*x84 - 429*x91 - 476*x98 =G= -27360;
e120.. -(x56*x126 + x63*x132 + x70*x138 + x77*x144) - 2*x7 - 2*x14 - 6*x21
- 5*x28 - 2*x35 - 391*x84 - 505*x91 - 197*x98 =G= -18560;
e121.. -(x56*x127 + x63*x133 + x70*x139 + x77*x145) - 5*x7 - 3*x14 - 3*x21
- x28 - x35 - 352*x84 - 266*x91 - 493*x98 =G= -21200;
e122.. -(x56*x128 + x63*x134 + x70*x140 + x77*x146) - 2*x7 - 6*x14 - 2*x21
- x28 - 6*x35 - 461*x84 - 481*x91 - 399*x98 =G= -31440;
e123.. -(x56*x129 + x63*x135 + x70*x141 + x77*x147) - 10*x7 - x21 - 4*x35
- 489*x84 - 505*x91 - 495*x98 =G= -23920;
e124.. -(x57*x124 + x64*x130 + x71*x136 + x78*x142) - x8 - 6*x15 - 4*x22
- 7*x29 - 6*x36 - 421*x85 - 112*x92 - 491*x99 =G= -31640;
e125.. -(x57*x125 + x64*x131 + x71*x137 + x78*x143) - 2*x8 - 2*x15 - 8*x22
- 9*x29 - 9*x36 - 316*x85 - 429*x92 - 476*x99 =G= -4480;
e126.. -(x57*x126 + x64*x132 + x71*x138 + x78*x144) - 2*x8 - 2*x15 - 6*x22
- 5*x29 - 2*x36 - 391*x85 - 505*x92 - 197*x99 =G= -700;
e127.. -(x57*x127 + x64*x133 + x71*x139 + x78*x145) - 5*x8 - 3*x15 - 3*x22
- x29 - x36 - 352*x85 - 266*x92 - 493*x99 =G= -23380;
e128.. -(x57*x128 + x64*x134 + x71*x140 + x78*x146) - 2*x8 - 6*x15 - 2*x22
- x29 - 6*x36 - 461*x85 - 481*x92 - 399*x99 =G= -10010;
e129.. -(x57*x129 + x64*x135 + x71*x141 + x78*x147) - 10*x8 - x22 - 4*x36
- 489*x85 - 505*x92 - 495*x99 =G= -17080;
e130.. x37 =L= 100;
e131.. x38 =L= 100;
e132.. x39 =L= 40;
e133.. x40 =L= 90;
e134.. x41 =L= 0;
e135.. x42 =L= 0;
e136.. x43 =L= 0;
* set non-default bounds
x2.up = 100000;
x3.up = 100000;
x4.up = 100000;
x5.up = 100000;
x6.up = 100000;
x7.up = 100000;
x8.up = 100000;
x9.up = 100000;
x10.up = 100000;
x11.up = 100000;
x12.up = 100000;
x13.up = 100000;
x14.up = 100000;
x15.up = 100000;
x16.up = 100000;
x17.up = 100000;
x18.up = 100000;
x19.up = 100000;
x20.up = 100000;
x21.up = 100000;
x22.up = 100000;
x23.up = 100000;
x24.up = 100000;
x25.up = 100000;
x26.up = 100000;
x27.up = 100000;
x28.up = 100000;
x29.up = 100000;
x30.up = 100000;
x31.up = 100000;
x32.up = 100000;
x33.up = 100000;
x34.up = 100000;
x35.up = 100000;
x36.up = 100000;
x37.up = 100000;
x38.up = 100000;
x39.up = 100000;
x40.up = 100000;
x41.up = 100000;
x42.up = 100000;
x43.up = 100000;
x44.up = 100000;
x45.up = 100000;
x46.up = 100000;
x47.up = 100000;
x48.up = 100000;
x49.up = 100000;
x50.up = 100000;
x51.up = 100000;
x52.up = 100000;
x53.up = 100000;
x54.up = 100000;
x55.up = 100000;
x56.up = 100000;
x57.up = 100000;
x58.up = 100000;
x59.up = 100000;
x60.up = 100000;
x61.up = 100000;
x62.up = 100000;
x63.up = 100000;
x64.up = 100000;
x65.up = 100000;
x66.up = 100000;
x67.up = 100000;
x68.up = 100000;
x69.up = 100000;
x70.up = 100000;
x71.up = 100000;
x72.up = 100000;
x73.up = 100000;
x74.up = 100000;
x75.up = 100000;
x76.up = 100000;
x77.up = 100000;
x78.up = 100000;
x79.up = 100000;
x80.up = 100000;
x81.up = 100000;
x82.up = 100000;
x83.up = 100000;
x84.up = 100000;
x85.up = 100000;
x86.up = 100000;
x87.up = 100000;
x88.up = 100000;
x89.up = 100000;
x90.up = 100000;
x91.up = 100000;
x92.up = 100000;
x93.up = 100000;
x94.up = 100000;
x95.up = 100000;
x96.up = 100000;
x97.up = 100000;
x98.up = 100000;
x99.up = 100000;
x100.up = 100000;
x101.up = 100000;
x102.up = 100000;
x103.up = 100000;
x104.up = 100000;
x105.up = 100000;
x106.up = 100000;
x107.up = 100000;
x108.up = 100000;
x109.up = 100000;
x110.up = 100000;
x111.up = 100000;
x112.up = 100000;
x113.up = 100000;
x114.up = 100000;
x115.up = 100000;
x116.up = 100000;
x117.up = 100000;
x118.up = 100000;
x119.up = 100000;
x120.up = 100000;
x121.up = 100000;
x122.up = 100000;
x123.up = 100000;
x124.up = 100000;
x125.up = 100000;
x126.up = 100000;
x127.up = 100000;
x128.up = 100000;
x129.up = 100000;
x130.up = 100000;
x131.up = 100000;
x132.up = 100000;
x133.up = 100000;
x134.up = 100000;
x135.up = 100000;
x136.up = 100000;
x137.up = 100000;
x138.up = 100000;
x139.up = 100000;
x140.up = 100000;
x141.up = 100000;
x142.up = 100000;
x143.up = 100000;
x144.up = 100000;
x145.up = 100000;
x146.up = 100000;
x147.up = 100000;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

