# NLP written by GAMS Convert at 02/17/22 17:19:06
#
# Equation counts
#     Total        E        G        L        N        X        C        B
#         5        1        0        4        0        0        0        0
#
# Variable counts
#                  x        b        i      s1s      s2s       sc       si
#     Total     cont   binary  integer     sos1     sos2    scont     sint
#         4        4        0        0        0        0        0        0
# FX      0
#
# Nonzero counts
#     Total    const       NL
#        18        6       12
#
# Reformulation has removed 1 variable and 1 equation

from pyomo.environ import *

model = m = ConcreteModel()

m.x1 = Var(within=Reals, bounds=(1e-06,1), initialize=0.371)
m.x2 = Var(within=Reals, bounds=(1e-06,1), initialize=0.629)
m.x3 = Var(within=Reals, bounds=(40,90), initialize=60.632)
m.x4 = Var(within=Reals, bounds=(0,None), initialize=0)

m.obj = Objective(sense=minimize, expr= m.x4)

m.e1 = Constraint(expr= 8.86 * log(2.1055 * m.x1 + 4.0456 * m.x2) - 7.888 * log
    (1.972 * m.x1 + 3.236 * m.x2) - (-0.922208999999999 * m.x1 + 2.1105532 *
    m.x2) / (2.1055 * m.x1 + 4.0456 * m.x2) + (-0.848 * log(1.52337552625369 *
    m.x1 + 3.236 * m.x2)) - 1.124 * log(1.17581829697036 * m.x1 +
    0.197740576646344 * m.x2) + (-(1.29182244626313 * m.x1 + 1.29182244626313 *
    m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2)) - (3.29049113670798 *
    m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2) - (0.347329619985842 *
    m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2) - (1.32161976579469 * m.x1)
    / (1.17581829697036 * m.x1 + 0.197740576646344 * m.x2) - 3803.98 / (231.47
    + m.x3) - m.x4 <= -13.1111702786953)
m.e2 = Constraint(expr= 15.18 * log(2.1055 * m.x1 + 4.0456 * m.x2) - 12.944 *
    log(1.972 * m.x1 + 3.236 * m.x2) - (-1.7719728 * m.x1 + 4.05530944 * m.x2)
    / (2.1055 * m.x1 + 4.0456 * m.x2) + (-0.848 * log(1.52337552625369 * m.x1
    + 3.236 * m.x2)) - 2.16 * log(1.52337552625369 * m.x1 + 3.236 * m.x2) -
    0.228 * log(1.52337552625369 * m.x1 + 3.236 * m.x2) + (-(2.744128 * m.x1 +
    2.744128 * m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2)) - (6.98976 *
    m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2) - (0.737808 * m.x2) / (
    1.52337552625369 * m.x1 + 3.236 * m.x2) - (0.222260408150491 * m.x1) / (
    1.17581829697036 * m.x1 + 0.197740576646344 * m.x2) - 2735.58621973158 / (
    226.276 + m.x3) - m.x4 <= -11.2003192377536)
m.e3 = Constraint(expr= 7.888 * log(1.972 * m.x1 + 3.236 * m.x2) - 8.86 * log(
    2.1055 * m.x1 + 4.0456 * m.x2) + (-0.922208999999999 * m.x1 + 2.1105532 *
    m.x2) / (2.1055 * m.x1 + 4.0456 * m.x2) + 0.848 * log(1.52337552625369 *
    m.x1 + 3.236 * m.x2) + 1.124 * log(1.17581829697036 * m.x1 +
    0.197740576646344 * m.x2) + (1.29182244626313 * m.x1 + 1.29182244626313 *
    m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2) + (3.29049113670798 * m.x2)
    / (1.52337552625369 * m.x1 + 3.236 * m.x2) + (0.347329619985842 * m.x2) /
    (1.52337552625369 * m.x1 + 3.236 * m.x2) + (1.32161976579469 * m.x1) / (
    1.17581829697036 * m.x1 + 0.197740576646344 * m.x2) + 3803.98 / (231.47 +
    m.x3) - m.x4 <= 13.1111702786953)
m.e4 = Constraint(expr= 12.944 * log(1.972 * m.x1 + 3.236 * m.x2) - 15.18 * log
    (2.1055 * m.x1 + 4.0456 * m.x2) + (-1.7719728 * m.x1 + 4.05530944 * m.x2)
    / (2.1055 * m.x1 + 4.0456 * m.x2) + 0.848 * log(1.52337552625369 * m.x1 +
    3.236 * m.x2) + 2.16 * log(1.52337552625369 * m.x1 + 3.236 * m.x2) + 0.228
    * log(1.52337552625369 * m.x1 + 3.236 * m.x2) + (2.744128 * m.x1 +
    2.744128 * m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2) + (6.98976 *
    m.x2) / (1.52337552625369 * m.x1 + 3.236 * m.x2) + (0.737808 * m.x2) / (
    1.52337552625369 * m.x1 + 3.236 * m.x2) + (0.222260408150491 * m.x1) / (
    1.17581829697036 * m.x1 + 0.197740576646344 * m.x2) + 2735.58621973158 / (
    226.276 + m.x3) - m.x4 <= 11.2003192377536)
m.e5 = Constraint(expr= m.x1 + m.x2 == 1)
