# NLP written by GAMS Convert at 02/17/22 17:19:07
#
# Equation counts
#     Total        E        G        L        N        X        C        B
#         3        3        0        0        0        0        0        0
#
# Variable counts
#                  x        b        i      s1s      s2s       sc       si
#     Total     cont   binary  integer     sos1     sos2    scont     sint
#         9        9        0        0        0        0        0        0
# FX      0
#
# Nonzero counts
#     Total    const       NL
#         9        9        0
#
# Reformulation has removed 1 variable and 1 equation

from pyomo.environ import *

model = m = ConcreteModel()

m.x1 = Var(within=Reals, bounds=(1e-07,0.4), initialize=0.0088)
m.x2 = Var(within=Reals, bounds=(1e-07,0.4), initialize=0.33595)
m.x3 = Var(within=Reals, bounds=(1e-07,0.4), initialize=0.05525)
m.x4 = Var(within=Reals, bounds=(1e-07,0.1), initialize=0.00065)
m.x5 = Var(within=Reals, bounds=(1e-07,0.1), initialize=0.00193)
m.x6 = Var(within=Reals, bounds=(1e-07,0.1), initialize=0.09742)
m.x7 = Var(within=Reals, bounds=(1e-07,0.5), initialize=0.30803)
m.x8 = Var(within=Reals, bounds=(1e-07,0.5), initialize=0.147)
m.x9 = Var(within=Reals, bounds=(1e-07,0.5), initialize=0.04497)

m.obj = Objective(sense=minimize, expr= log(2.4088 * m.x1 + 8.8495 * m.x4 +
    2.0086 * m.x7) * (10.4807341082197 * m.x1 + 38.5043409542885 * m.x4 +
    8.73945638067505 * m.x7) + 0.102582206615077 * m.x1 - 4.55292602721008 *
    m.x4 + 0.0196376909050935 * m.x7 + 0.240734108219679 * log(m.x1) * m.x1 +
    2.64434095428848 * log(m.x4) * m.x4 + 0.399456380675047 * log(m.x7) * m.x7
    - 0.240734108219679 * log(2.4088 * m.x1 + 8.8495 * m.x4 + 2.0086 * m.x7)
    * m.x1 - 2.64434095428848 * log(2.4088 * m.x1 + 8.8495 * m.x4 + 2.0086 *
    m.x7) * m.x4 - 0.399456380675047 * log(2.4088 * m.x1 + 8.8495 * m.x4 +
    2.0086 * m.x7) * m.x7 + 11.24 * log(m.x1) * m.x1 + 36.86 * log(m.x4) * m.x4
    + 9.34 * log(m.x7) * m.x7 - 11.24 * log(2.248 * m.x1 + 7.372 * m.x4 +
    1.868 * m.x7) * m.x1 - 36.86 * log(2.248 * m.x1 + 7.372 * m.x4 + 1.868 *
    m.x7) * m.x4 - 9.34 * log(2.248 * m.x1 + 7.372 * m.x4 + 1.868 * m.x7) *
    m.x7 + log(2.248 * m.x1 + 7.372 * m.x4 + 1.868 * m.x7) * (2.248 * m.x1 +
    7.372 * m.x4 + 1.868 * m.x7) + 2.248 * log(m.x1) * m.x1 + 7.372 * log(m.x4)
    * m.x4 + 1.868 * log(m.x7) * m.x7 - 2.248 * log(2.248 * m.x1 +
    5.82088173817021 * m.x4 + 0.382446861901943 * m.x7) * m.x1 - 7.372 * log(
    0.972461133672523 * m.x1 + 7.372 * m.x4 + 1.1893141713454 * m.x7) * m.x4 -
    1.868 * log(1.86752460515164 * m.x1 + 2.61699842799583 * m.x4 + 1.868 *
    m.x7) * m.x7 + log(2.4088 * m.x2 + 8.8495 * m.x5 + 2.0086 * m.x8) * (
    10.4807341082197 * m.x2 + 38.5043409542885 * m.x5 + 8.73945638067505 * m.x8)
    + 0.102582206615077 * m.x2 - 4.55292602721008 * m.x5 + 0.0196376909050935
    * m.x8 + 0.240734108219679 * log(m.x2) * m.x2 + 2.64434095428848 * log(m.x5)
    * m.x5 + 0.399456380675047 * log(m.x8) * m.x8 - 0.240734108219679 * log(
    2.4088 * m.x2 + 8.8495 * m.x5 + 2.0086 * m.x8) * m.x2 - 2.64434095428848 *
    log(2.4088 * m.x2 + 8.8495 * m.x5 + 2.0086 * m.x8) * m.x5 -
    0.399456380675047 * log(2.4088 * m.x2 + 8.8495 * m.x5 + 2.0086 * m.x8) *
    m.x8 + 11.24 * log(m.x2) * m.x2 + 36.86 * log(m.x5) * m.x5 + 9.34 * log(
    m.x8) * m.x8 - 11.24 * log(2.248 * m.x2 + 7.372 * m.x5 + 1.868 * m.x8) *
    m.x2 - 36.86 * log(2.248 * m.x2 + 7.372 * m.x5 + 1.868 * m.x8) * m.x5 -
    9.34 * log(2.248 * m.x2 + 7.372 * m.x5 + 1.868 * m.x8) * m.x8 + log(2.248 *
    m.x2 + 7.372 * m.x5 + 1.868 * m.x8) * (2.248 * m.x2 + 7.372 * m.x5 + 1.868
    * m.x8) + 2.248 * log(m.x2) * m.x2 + 7.372 * log(m.x5) * m.x5 + 1.868 *
    log(m.x8) * m.x8 - 2.248 * log(2.248 * m.x2 + 5.82088173817021 * m.x5 +
    0.382446861901943 * m.x8) * m.x2 - 7.372 * log(0.972461133672523 * m.x2 +
    7.372 * m.x5 + 1.1893141713454 * m.x8) * m.x5 - 1.868 * log(
    1.86752460515164 * m.x2 + 2.61699842799583 * m.x5 + 1.868 * m.x8) * m.x8 +
    log(2.4088 * m.x3 + 8.8495 * m.x6 + 2.0086 * m.x9) * (10.4807341082197 *
    m.x3 + 38.5043409542885 * m.x6 + 8.73945638067505 * m.x9) +
    0.102582206615077 * m.x3 - 4.55292602721008 * m.x6 + 0.0196376909050935 *
    m.x9 + 0.240734108219679 * log(m.x3) * m.x3 + 2.64434095428848 * log(m.x6)
    * m.x6 + 0.399456380675047 * log(m.x9) * m.x9 - 0.240734108219679 * log(
    2.4088 * m.x3 + 8.8495 * m.x6 + 2.0086 * m.x9) * m.x3 - 2.64434095428848 *
    log(2.4088 * m.x3 + 8.8495 * m.x6 + 2.0086 * m.x9) * m.x6 -
    0.399456380675047 * log(2.4088 * m.x3 + 8.8495 * m.x6 + 2.0086 * m.x9) *
    m.x9 + 11.24 * log(m.x3) * m.x3 + 36.86 * log(m.x6) * m.x6 + 9.34 * log(
    m.x9) * m.x9 - 11.24 * log(2.248 * m.x3 + 7.372 * m.x6 + 1.868 * m.x9) *
    m.x3 - 36.86 * log(2.248 * m.x3 + 7.372 * m.x6 + 1.868 * m.x9) * m.x6 -
    9.34 * log(2.248 * m.x3 + 7.372 * m.x6 + 1.868 * m.x9) * m.x9 + log(2.248 *
    m.x3 + 7.372 * m.x6 + 1.868 * m.x9) * (2.248 * m.x3 + 7.372 * m.x6 + 1.868
    * m.x9) + 2.248 * log(m.x3) * m.x3 + 7.372 * log(m.x6) * m.x6 + 1.868 *
    log(m.x9) * m.x9 - 2.248 * log(2.248 * m.x3 + 5.82088173817021 * m.x6 +
    0.382446861901943 * m.x9) * m.x3 - 7.372 * log(0.972461133672523 * m.x3 +
    7.372 * m.x6 + 1.1893141713454 * m.x9) * m.x6 - 1.868 * log(
    1.86752460515164 * m.x3 + 2.61699842799583 * m.x6 + 1.868 * m.x9) * m.x9 -
    12.7287341082197 * log(m.x1) * m.x1 - 45.8763409542885 * log(m.x4) * m.x4
    - 10.607456380675 * log(m.x7) * m.x7 - 12.7287341082197 * log(m.x2) * m.x2
    - 45.8763409542885 * log(m.x5) * m.x5 - 10.607456380675 * log(m.x8) * m.x8
    - 12.7287341082197 * log(m.x3) * m.x3 - 45.8763409542885 * log(m.x6) *
    m.x6 - 10.607456380675 * log(m.x9) * m.x9)

m.e1 = Constraint(expr= m.x1 + m.x2 + m.x3 == 0.4)
m.e2 = Constraint(expr= m.x4 + m.x5 + m.x6 == 0.1)
m.e3 = Constraint(expr= m.x7 + m.x8 + m.x9 == 0.5)
