MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ann_fermentation_exp
Fermentation process of glucose to gluconic acid learned and optimized by an embedded artificial neural network. In this variant of ann_fermentation_tanh, the tanh(x) activation function has been replaced by 1-2/(exp(2x)+1) (form 3 in paper).
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -104.89721230 (ANTIGONE) -99.93702217 (BARON) -99.93663292 (LINDO) -99.93675290 (SCIP) |
Referencesⓘ | Schweidtmann, Artur M. and Mitsos, Alexander, Deterministic Global Optimization with Artificial Neural Networks Embedded, Journal of Optimization Theory and Applications, 180:3, 2019, 925-948. |
Applicationⓘ | Neural Networks |
Added to libraryⓘ | 29 Nov 2021 |
Problem typeⓘ | NLP |
#Variablesⓘ | 12 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | signomial |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 9 |
#Linear Constraintsⓘ | 7 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 2 |
Operands in Gen. Nonlin. Functionsⓘ | div exp |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 23 |
#Nonlinear Nonzeros in Jacobianⓘ | 2 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 5 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 1.333333 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.5000e-02 |
Maximal coefficientⓘ | 1.4792e+02 |
Infeasibility of initial pointⓘ | 101.2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 10 10 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 13 13 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL * 26 22 4 * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10; e1.. 91.91176470588235 * x10 / x2 + objvar =E= 0; e2.. 2 / (exp(2 * x12) + 1) + x8 =E= 1; e3.. 2 / (exp(2 * x13) + 1) + x9 =E= 1; e4.. -0.0949474332688833 * x8 + 0.968637250639063 * x9 + x11 =E= 0.002499597315649; e5.. x10 - 86.324 * x11 =E= 92.74; e6.. -0.025 * x2 + x5 =E= -3.5; e7.. -x3 + x6 =E= -2; e8.. -0.04 * x4 + x7 =E= -1.4; e9.. -24.4380718077469 * x5 - 22.0304402344789 * x6 + 147.921509281049 * x7 + x12 =E= 101.235018055261; e10.. 1.48567642304727 * x5 - 0.0532843142008436 * x6 + 0.910590580134437 * x7 + x13 =E= 0.18771256886977; * set non-default bounds x2.lo = 100; x2.up = 180; x3.lo = 1; x3.up = 3; x4.lo = 10; x4.up = 60; Model m / all /; m.limrow = 0; m.tolproj=0.0; m.limcol = 0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f