MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ann_peaks_tanh
Peaks test function learned and optimized by an embedded artificial neural network.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -6.56307154 (LINDO) |
| Referencesⓘ | Schweidtmann, Artur M. and Mitsos, Alexander, Deterministic Global Optimization with Artificial Neural Networks Embedded, Journal of Optimization Theory and Applications, 180:3, 2019, 925-948. |
| Applicationⓘ | Neural Networks |
| Added to libraryⓘ | 29 Nov 2021 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 100 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 47 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 98 |
| #Linear Constraintsⓘ | 51 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 47 |
| Operands in Gen. Nonlin. Functionsⓘ | tanh |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 289 |
| #Nonlinear Nonzeros in Jacobianⓘ | 47 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 47 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 47 |
| #Blocks in Hessian of Lagrangianⓘ | 47 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.2644e-03 |
| Maximal coefficientⓘ | 9.4928e+00 |
| Infeasibility of initial pointⓘ | 9.714 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 99 99 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 101 101 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL
* 291 244 47
* Solve m using NLP minimizing objvar;
Variables
objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,
x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,
x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55,x56,x57,x58,
x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,
x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,
x97,x98,x99,x100,x101;
Equations
e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,
e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36,e37,e38,e39,e40,
e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53,e54,e55,e56,e57,e58,e59,
e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70,e71,e72,e73,e74,e75,e76,e77,e78,
e79,e80,e81,e82,e83,e84,e85,e86,e87,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,
e98,e99;
e1.. objvar - x53 =E= 0;
e2.. -tanh(x55) + x6 =E= 0;
e3.. -tanh(x56) + x7 =E= 0;
e4.. -tanh(x57) + x8 =E= 0;
e5.. -tanh(x58) + x9 =E= 0;
e6.. -tanh(x59) + x10 =E= 0;
e7.. -tanh(x60) + x11 =E= 0;
e8.. -tanh(x61) + x12 =E= 0;
e9.. -tanh(x62) + x13 =E= 0;
e10.. -tanh(x63) + x14 =E= 0;
e11.. -tanh(x64) + x15 =E= 0;
e12.. -tanh(x65) + x16 =E= 0;
e13.. -tanh(x66) + x17 =E= 0;
e14.. -tanh(x67) + x18 =E= 0;
e15.. -tanh(x68) + x19 =E= 0;
e16.. -tanh(x69) + x20 =E= 0;
e17.. -tanh(x70) + x21 =E= 0;
e18.. -tanh(x71) + x22 =E= 0;
e19.. -tanh(x72) + x23 =E= 0;
e20.. -tanh(x73) + x24 =E= 0;
e21.. -tanh(x74) + x25 =E= 0;
e22.. -tanh(x75) + x26 =E= 0;
e23.. -tanh(x76) + x27 =E= 0;
e24.. -tanh(x77) + x28 =E= 0;
e25.. -tanh(x78) + x29 =E= 0;
e26.. -tanh(x79) + x30 =E= 0;
e27.. -tanh(x80) + x31 =E= 0;
e28.. -tanh(x81) + x32 =E= 0;
e29.. -tanh(x82) + x33 =E= 0;
e30.. -tanh(x83) + x34 =E= 0;
e31.. -tanh(x84) + x35 =E= 0;
e32.. -tanh(x85) + x36 =E= 0;
e33.. -tanh(x86) + x37 =E= 0;
e34.. -tanh(x87) + x38 =E= 0;
e35.. -tanh(x88) + x39 =E= 0;
e36.. -tanh(x89) + x40 =E= 0;
e37.. -tanh(x90) + x41 =E= 0;
e38.. -tanh(x91) + x42 =E= 0;
e39.. -tanh(x92) + x43 =E= 0;
e40.. -tanh(x93) + x44 =E= 0;
e41.. -tanh(x94) + x45 =E= 0;
e42.. -tanh(x95) + x46 =E= 0;
e43.. -tanh(x96) + x47 =E= 0;
e44.. -tanh(x97) + x48 =E= 0;
e45.. -tanh(x98) + x49 =E= 0;
e46.. -tanh(x99) + x50 =E= 0;
e47.. -tanh(x100) + x51 =E= 0;
e48.. -tanh(x101) + x52 =E= 0;
e49.. 0.065704 * x6 - 0.033719 * x7 + 0.76133 * x8 - 0.48805 * x9 + 0.10716 *
x10 - 0.12256 * x11 - 0.47773 * x12 - 1.4593 * x13 - 0.12829 * x14 -
0.17066 * x15 + 0.031784 * x16 - 1.0343 * x17 + 0.7515 * x18 - 0.17572 *
x19 - 0.89455 * x20 + 1.0327 * x21 - 0.053874 * x22 - 0.32397 * x23 -
1.8663 * x24 - 0.5493 * x25 + 0.60609 * x26 - 0.40068 * x27 + 0.92391 *
x28 + 0.93709 * x29 + 0.24686 * x30 + 1.7127 * x31 + 0.30011 * x32 +
0.28025 * x33 + 0.23534 * x34 - 1.205 * x35 + 0.50945 * x36 + 0.20317 *
x37 - 0.26555 * x38 + 1.6129 * x39 + 0.28066 * x40 + 0.080875 * x41 +
0.26354 * x42 - 0.17364 * x43 + 0.58227 * x44 + 0.15634 * x45 - 0.20363
* x46 - 0.041905 * x47 + 0.43558 * x48 - 0.031562 * x49 + 1.0758 * x50
+ 0.96224 * x51 - 0.042862 * x52 + x54 =E= -0.060465315174905;
e50.. x53 - 6.969979437085875 * x54 =E= 0.7601908525553558;
e51.. -0.33393267662969284 * x2 + x4 =E= -0.0004457779206294976;
e52.. -0.3345887696749378 * x3 + x5 =E= -0.0002029955280284934;
e53.. -9.10703116886844 * x4 - 2.94337038212874 * x5 + x55 =E=
-9.63015944232877;
e54.. 6.93102790414726 * x4 - 3.75196310820969 * x5 + x56 =E=
7.31017275430626;
e55.. 3.36432203670221 * x4 + 0.82525521613015 * x5 + x57 =E=
2.98200536306973;
e56.. 1.64194568809983 * x4 + 4.48523835606202 * x5 + x58 =E=
2.77237105961281;
e57.. -0.00226437988375905 * x4 + 4.867765277275 * x5 + x59 =E=
-4.42497349082323;
e58.. 7.19863262227284 * x4 + 1.87895940079179 * x5 + x60 =E=
6.25777205138423;
e59.. -0.74811043850941 * x4 + 4.20191684807602 * x5 + x61 =E=
-2.62626886981211;
e60.. 2.65321880831968 * x4 + 2.19715149631687 * x5 + x62 =E=
1.60241051102647;
e61.. 1.95895703624561 * x4 + 6.61501085095858 * x5 + x63 =E=
-3.21372438941966;
e62.. 0.976462786697995 * x4 + 5.4722226686442 * x5 + x64 =E=
-3.43511278570442;
e63.. 9.05631954225151 * x4 - 0.860748840616473 * x5 + x65 =E=
6.80778429540444;
e64.. 2.51698650443046 * x4 - 1.12325188704783 * x5 + x66 =E=
1.46066391523409;
e65.. 2.53263349216247 * x4 - 2.83124829526224 * x5 + x67 =E=
2.00914786562159;
e66.. 1.64022926216511 * x4 - 6.71323991116741 * x5 + x68 =E=
2.30586986684063;
e67.. 1.7873770187918 * x4 - 3.68278580116741 * x5 + x69 =E= 1.39928381929576;
e68.. 4.22195373550896 * x4 - 0.396477134417836 * x5 + x70 =E=
0.964209592889774;
e69.. 2.41239470358791 * x4 - 8.80924154690345 * x5 + x71 =E=
4.23134871494298;
e70.. -0.442923139035927 * x4 - 5.28020902797231 * x5 + x72 =E=
2.04241734851624;
e71.. 3.51805314742391 * x4 - 1.30278510763279 * x5 + x73 =E=
0.0651561391008471;
e72.. -0.113212023605603 * x4 + 4.72324347930784 * x5 + x74 =E=
-0.853205151783354;
e73.. 3.95665396270945 * x4 + 1.27626711582506 * x5 + x75 =E=
0.814440074164862;
e74.. 4.7695955444504 * x4 + 0.773487861729487 * x5 + x76 =E=
-0.111247602721831;
e75.. 2.05027781679787 * x4 - 2.50975207869453 * x5 + x77 =E=
0.0820486511860433;
e76.. 3.66654493886071 * x4 + 2.38892762517696 * x5 + x78 =E=
-0.891390460987188;
e77.. 3.27998735486886 * x4 - 2.59050296919374 * x5 + x79 =E=
-0.739390789012633;
e78.. 1.6153208627896 * x4 + 2.33417975474504 * x5 + x80 =E=
0.871854475217263;
e79.. -1.11358422125162 * x4 - 5.30599002390186 * x5 + x81 =E=
-1.00704834952813;
e80.. -2.92402686265607 * x4 - 2.89613202071523 * x5 + x82 =E=
-0.232468557606477;
e81.. -1.81867167443697 * x4 + 7.33812407332642 * x5 + x83 =E=
2.54135224708381;
e82.. 3.10542197925959 * x4 + 2.12619668948654 * x5 + x84 =E=
-0.68717003462119;
e83.. 1.74472150970003 * x4 + 4.95282077029394 * x5 + x85 =E=
-2.17551955892824;
e84.. -2.65152859120729 * x4 + 4.38271460759243 * x5 + x86 =E=
1.53042126339426;
e85.. 4.1487314966423 * x4 + 1.36838462771498 * x5 + x87 =E=
-2.02423652126007;
e86.. 3.71026588633397 * x4 - 0.240322230905286 * x5 + x88 =E=
-0.902116571066426;
e87.. 0.136858569888465 * x4 + 6.22839150715604 * x5 + x89 =E=
2.22245776134561;
e88.. -2.29273626384379 * x4 + 9.49277618264744 * x5 + x90 =E=
4.61447478864626;
e89.. -3.29404103074185 * x4 - 4.22870341832834 * x5 + x91 =E=
2.65015883530254;
e90.. 0.236622607550426 * x4 + 6.32282202964636 * x5 + x92 =E=
4.10022407859802;
e91.. -3.50739896377168 * x4 + 1.52421925481854 * x5 + x93 =E=
1.81299728715722;
e92.. -3.82419999460229 * x4 + 3.12341880053042 * x5 + x94 =E=
3.64656884309529;
e93.. -3.66913363409212 * x4 + 0.319990400846123 * x5 + x95 =E=
2.89624962044085;
e94.. -8.1823967031854 * x4 - 4.01934818658146 * x5 + x96 =E=
7.19040411962699;
e95.. 2.45448375388046 * x4 - 4.00420657536838 * x5 + x97 =E=
-2.8116643770919;
e96.. 6.4400062979969 * x4 + 8.07408273005427 * x5 + x98 =E=
-6.51730187495992;
e97.. -4.28496179289514 * x4 + 8.05160576591809 * x5 + x99 =E=
9.22764002248408;
e98.. 4.52908595891183 * x4 - 8.45807037184382 * x5 + x100 =E=
-9.71433325733342;
e99.. 9.03003295779029 * x4 + 5.87007164848379 * x5 + x101 =E=
-8.54369465648149;
* set non-default bounds
x2.lo = -3; x2.up = 3;
x3.lo = -3; x3.up = 3;
Model m / all /;
m.limrow = 0;
m.tolproj=0.0;
m.limcol = 0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

