MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern20-05
degree-four model for low autocorrelated binary sequences This instance arises in theoretical physics. Determining a ground state in the so-called Bernasconi model amounts to minimizing a degree-four energy function over variables taking values in {+1,-1}. Here, the energy function is expressed in 0/1 variables. The model contains symmetries, leading to multiple optimum solutions.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -416.00000040 (ANTIGONE) -416.00000040 (BARON) -416.00000010 (COUENNE) -416.00000000 (LINDO) -416.00000000 (PQCR) -416.00000000 (SCIP) -416.00000000 (SHOT) |
Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.20.5 |
Applicationⓘ | Autocorrelated Sequences |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 21 |
#Binary Variablesⓘ | 20 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 20 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 21 |
#Nonlinear Nonzeros in Jacobianⓘ | 20 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 140 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 20 |
Maximal blocksize in Hessian of Lagrangianⓘ | 20 |
Average blocksize in Hessian of Lagrangianⓘ | 20.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.2800e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 21 1 20 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 21 1 20 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20; Equations e1; e1.. 64*b1*b2*b3*b4 + 64*b1*b2*b4*b5 + 128*b2*b3*b4*b5 + 64*b2*b3*b5*b6 + 128* b3*b4*b5*b6 + 64*b3*b4*b6*b7 + 128*b4*b5*b6*b7 + 64*b4*b5*b7*b8 + 128*b5* b6*b7*b8 + 64*b5*b6*b8*b9 + 128*b6*b7*b8*b9 + 64*b6*b7*b9*b10 + 128*b7*b8* b9*b10 + 64*b7*b8*b10*b11 + 128*b8*b9*b10*b11 + 64*b8*b9*b11*b12 + 128*b9* b10*b11*b12 + 64*b9*b10*b12*b13 + 128*b10*b11*b12*b13 + 64*b10*b11*b13*b14 + 128*b11*b12*b13*b14 + 64*b11*b12*b14*b15 + 128*b12*b13*b14*b15 + 64*b12 *b13*b15*b16 + 128*b13*b14*b15*b16 + 64*b13*b14*b16*b17 + 128*b14*b15*b16* b17 + 64*b14*b15*b17*b18 + 128*b15*b16*b17*b18 + 64*b15*b16*b18*b19 + 128* b16*b17*b18*b19 + 64*b16*b17*b19*b20 + 64*b17*b18*b19*b20 - 32*b1*b2*b3 - 64*b1*b2*b4 - 32*b1*b2*b5 - 32*b1*b3*b4 - 32*b1*b4*b5 - 96*b2*b3*b4 - 96* b2*b3*b5 - 32*b2*b3*b6 - 96*b2*b4*b5 - 32*b2*b5*b6 - 128*b3*b4*b5 - 96*b3* b4*b6 - 32*b3*b4*b7 - 96*b3*b5*b6 - 32*b3*b6*b7 - 128*b4*b5*b6 - 96*b4*b5* b7 - 32*b4*b5*b8 - 96*b4*b6*b7 - 32*b4*b7*b8 - 128*b5*b6*b7 - 96*b5*b6*b8 - 32*b5*b6*b9 - 96*b5*b7*b8 - 32*b5*b8*b9 - 128*b6*b7*b8 - 96*b6*b7*b9 - 32*b6*b7*b10 - 96*b6*b8*b9 - 32*b6*b9*b10 - 128*b7*b8*b9 - 96*b7*b8*b10 - 32*b7*b8*b11 - 96*b7*b9*b10 - 32*b7*b10*b11 - 128*b8*b9*b10 - 96*b8*b9*b11 - 32*b8*b9*b12 - 96*b8*b10*b11 - 32*b8*b11*b12 - 128*b9*b10*b11 - 96*b9* b10*b12 - 32*b9*b10*b13 - 96*b9*b11*b12 - 32*b9*b12*b13 - 128*b10*b11*b12 - 96*b10*b11*b13 - 32*b10*b11*b14 - 96*b10*b12*b13 - 32*b10*b13*b14 - 128 *b11*b12*b13 - 96*b11*b12*b14 - 32*b11*b12*b15 - 96*b11*b13*b14 - 32*b11* b14*b15 - 128*b12*b13*b14 - 96*b12*b13*b15 - 32*b12*b13*b16 - 96*b12*b14* b15 - 32*b12*b15*b16 - 128*b13*b14*b15 - 96*b13*b14*b16 - 32*b13*b14*b17 - 96*b13*b15*b16 - 32*b13*b16*b17 - 128*b14*b15*b16 - 96*b14*b15*b17 - 32 *b14*b15*b18 - 96*b14*b16*b17 - 32*b14*b17*b18 - 128*b15*b16*b17 - 96*b15* b16*b18 - 32*b15*b16*b19 - 96*b15*b17*b18 - 32*b15*b18*b19 - 128*b16*b17* b18 - 96*b16*b17*b19 - 32*b16*b17*b20 - 96*b16*b18*b19 - 32*b16*b19*b20 - 96*b17*b18*b19 - 32*b17*b18*b20 - 64*b17*b19*b20 - 32*b18*b19*b20 + 32*b1* b2 + 24*b1*b3 + 32*b1*b4 + 24*b1*b5 + 64*b2*b3 + 80*b2*b4 + 64*b2*b5 + 24* b2*b6 + 96*b3*b4 + 104*b3*b5 + 64*b3*b6 + 24*b3*b7 + 128*b4*b5 + 104*b4*b6 + 64*b4*b7 + 24*b4*b8 + 128*b5*b6 + 104*b5*b7 + 64*b5*b8 + 24*b5*b9 + 128 *b6*b7 + 104*b6*b8 + 64*b6*b9 + 24*b6*b10 + 128*b7*b8 + 104*b7*b9 + 64*b7* b10 + 24*b7*b11 + 128*b8*b9 + 104*b8*b10 + 64*b8*b11 + 24*b8*b12 + 128*b9* b10 + 104*b9*b11 + 64*b9*b12 + 24*b9*b13 + 128*b10*b11 + 104*b10*b12 + 64* b10*b13 + 24*b10*b14 + 128*b11*b12 + 104*b11*b13 + 64*b11*b14 + 24*b11*b15 + 128*b12*b13 + 104*b12*b14 + 64*b12*b15 + 24*b12*b16 + 128*b13*b14 + 104 *b13*b15 + 64*b13*b16 + 24*b13*b17 + 128*b14*b15 + 104*b14*b16 + 64*b14* b17 + 24*b14*b18 + 128*b15*b16 + 104*b15*b17 + 64*b15*b18 + 24*b15*b19 + 128*b16*b17 + 104*b16*b18 + 64*b16*b19 + 24*b16*b20 + 96*b17*b18 + 80*b17* b19 + 32*b17*b20 + 64*b18*b19 + 24*b18*b20 + 32*b19*b20 - 24*b1 - 52*b2 - 76*b3 - 104*b4 - 128*b5 - 128*b6 - 128*b7 - 128*b8 - 128*b9 - 128*b10 - 128*b11 - 128*b12 - 128*b13 - 128*b14 - 128*b15 - 128*b16 - 104*b17 - 76* b18 - 52*b19 - 24*b20 - objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f