MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance autocorr_bern20-10

degree-four model for low autocorrelated binary sequences
This instance arises in theoretical physics. Determining a ground
state in the so-called Bernasconi model amounts to minimizing a
degree-four energy function over variables taking values in
{+1,-1}. Here, the energy function is expressed in 0/1 variables. The
model contains symmetries, leading to multiple optimum solutions.
Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-2936.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-2936.00000300 (ANTIGONE)
-2936.00000300 (BARON)
-2936.00000000 (COUENNE)
-2936.00000000 (LINDO)
-2936.00000000 (PQCR)
-2936.00000000 (SCIP)
-2936.00000000 (SHOT)
References Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003.
Source POLIP instance autocorrelated_sequences/bernasconi.20.10
Application Autocorrelated Sequences
Added to library 26 Feb 2014
Problem type MBNLP
#Variables 21
#Binary Variables 20
#Integer Variables 0
#Nonlinear Variables 20
#Nonlinear Binary Variables 20
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 1
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 1
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 21
#Nonlinear Nonzeros in Jacobian 20
#Nonzeros in (Upper-Left) Hessian of Lagrangian 270
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 20
Maximal blocksize in Hessian of Lagrangian 20
Average blocksize in Hessian of Lagrangian 20.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 1.7600e+03
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        0        0        1        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         21        1       20        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         21        1       20        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
          ,b20,objvar;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
          ,b18,b19,b20;

Equations  e1;


e1.. 64*b1*b2*b3*b4 + 64*b1*b2*b4*b5 + 64*b1*b2*b5*b6 + 64*b1*b2*b6*b7 + 64*b1*
     b2*b7*b8 + 64*b1*b2*b8*b9 + 64*b1*b2*b9*b10 + 64*b1*b3*b4*b6 + 64*b1*b3*b5
     *b7 + 64*b1*b3*b6*b8 + 64*b1*b3*b7*b9 + 64*b1*b3*b8*b10 + 64*b1*b4*b5*b8
      + 64*b1*b4*b6*b9 + 64*b1*b4*b7*b10 + 64*b1*b5*b6*b10 + 128*b2*b3*b4*b5 + 
     128*b2*b3*b5*b6 + 128*b2*b3*b6*b7 + 128*b2*b3*b7*b8 + 128*b2*b3*b8*b9 + 
     128*b2*b3*b9*b10 + 64*b2*b3*b10*b11 + 128*b2*b4*b5*b7 + 128*b2*b4*b6*b8 + 
     128*b2*b4*b7*b9 + 128*b2*b4*b8*b10 + 64*b2*b4*b9*b11 + 128*b2*b5*b6*b9 + 
     128*b2*b5*b7*b10 + 64*b2*b5*b8*b11 + 64*b2*b6*b7*b11 + 192*b3*b4*b5*b6 + 
     192*b3*b4*b6*b7 + 192*b3*b4*b7*b8 + 192*b3*b4*b8*b9 + 192*b3*b4*b9*b10 + 
     128*b3*b4*b10*b11 + 64*b3*b4*b11*b12 + 192*b3*b5*b6*b8 + 192*b3*b5*b7*b9
      + 192*b3*b5*b8*b10 + 128*b3*b5*b9*b11 + 64*b3*b5*b10*b12 + 192*b3*b6*b7*
     b10 + 128*b3*b6*b8*b11 + 64*b3*b6*b9*b12 + 64*b3*b7*b8*b12 + 256*b4*b5*b6*
     b7 + 256*b4*b5*b7*b8 + 256*b4*b5*b8*b9 + 256*b4*b5*b9*b10 + 192*b4*b5*b10*
     b11 + 128*b4*b5*b11*b12 + 64*b4*b5*b12*b13 + 256*b4*b6*b7*b9 + 256*b4*b6*
     b8*b10 + 192*b4*b6*b9*b11 + 128*b4*b6*b10*b12 + 64*b4*b6*b11*b13 + 192*b4*
     b7*b8*b11 + 128*b4*b7*b9*b12 + 64*b4*b7*b10*b13 + 64*b4*b8*b9*b13 + 320*b5
     *b6*b7*b8 + 320*b5*b6*b8*b9 + 320*b5*b6*b9*b10 + 256*b5*b6*b10*b11 + 192*
     b5*b6*b11*b12 + 128*b5*b6*b12*b13 + 64*b5*b6*b13*b14 + 320*b5*b7*b8*b10 + 
     256*b5*b7*b9*b11 + 192*b5*b7*b10*b12 + 128*b5*b7*b11*b13 + 64*b5*b7*b12*
     b14 + 192*b5*b8*b9*b12 + 128*b5*b8*b10*b13 + 64*b5*b8*b11*b14 + 64*b5*b9*
     b10*b14 + 384*b6*b7*b8*b9 + 384*b6*b7*b9*b10 + 320*b6*b7*b10*b11 + 256*b6*
     b7*b11*b12 + 192*b6*b7*b12*b13 + 128*b6*b7*b13*b14 + 64*b6*b7*b14*b15 + 
     320*b6*b8*b9*b11 + 256*b6*b8*b10*b12 + 192*b6*b8*b11*b13 + 128*b6*b8*b12*
     b14 + 64*b6*b8*b13*b15 + 192*b6*b9*b10*b13 + 128*b6*b9*b11*b14 + 64*b6*b9*
     b12*b15 + 64*b6*b10*b11*b15 + 448*b7*b8*b9*b10 + 384*b7*b8*b10*b11 + 320*
     b7*b8*b11*b12 + 256*b7*b8*b12*b13 + 192*b7*b8*b13*b14 + 128*b7*b8*b14*b15
      + 64*b7*b8*b15*b16 + 320*b7*b9*b10*b12 + 256*b7*b9*b11*b13 + 192*b7*b9*
     b12*b14 + 128*b7*b9*b13*b15 + 64*b7*b9*b14*b16 + 192*b7*b10*b11*b14 + 128*
     b7*b10*b12*b15 + 64*b7*b10*b13*b16 + 64*b7*b11*b12*b16 + 448*b8*b9*b10*b11
      + 384*b8*b9*b11*b12 + 320*b8*b9*b12*b13 + 256*b8*b9*b13*b14 + 192*b8*b9*
     b14*b15 + 128*b8*b9*b15*b16 + 64*b8*b9*b16*b17 + 320*b8*b10*b11*b13 + 256*
     b8*b10*b12*b14 + 192*b8*b10*b13*b15 + 128*b8*b10*b14*b16 + 64*b8*b10*b15*
     b17 + 192*b8*b11*b12*b15 + 128*b8*b11*b13*b16 + 64*b8*b11*b14*b17 + 64*b8*
     b12*b13*b17 + 448*b9*b10*b11*b12 + 384*b9*b10*b12*b13 + 320*b9*b10*b13*b14
      + 256*b9*b10*b14*b15 + 192*b9*b10*b15*b16 + 128*b9*b10*b16*b17 + 64*b9*
     b10*b17*b18 + 320*b9*b11*b12*b14 + 256*b9*b11*b13*b15 + 192*b9*b11*b14*b16
      + 128*b9*b11*b15*b17 + 64*b9*b11*b16*b18 + 192*b9*b12*b13*b16 + 128*b9*
     b12*b14*b17 + 64*b9*b12*b15*b18 + 64*b9*b13*b14*b18 + 448*b10*b11*b12*b13
      + 384*b10*b11*b13*b14 + 320*b10*b11*b14*b15 + 256*b10*b11*b15*b16 + 192*
     b10*b11*b16*b17 + 128*b10*b11*b17*b18 + 64*b10*b11*b18*b19 + 320*b10*b12*
     b13*b15 + 256*b10*b12*b14*b16 + 192*b10*b12*b15*b17 + 128*b10*b12*b16*b18
      + 64*b10*b12*b17*b19 + 192*b10*b13*b14*b17 + 128*b10*b13*b15*b18 + 64*b10
     *b13*b16*b19 + 64*b10*b14*b15*b19 + 448*b11*b12*b13*b14 + 384*b11*b12*b14*
     b15 + 320*b11*b12*b15*b16 + 256*b11*b12*b16*b17 + 192*b11*b12*b17*b18 + 
     128*b11*b12*b18*b19 + 64*b11*b12*b19*b20 + 320*b11*b13*b14*b16 + 256*b11*
     b13*b15*b17 + 192*b11*b13*b16*b18 + 128*b11*b13*b17*b19 + 64*b11*b13*b18*
     b20 + 192*b11*b14*b15*b18 + 128*b11*b14*b16*b19 + 64*b11*b14*b17*b20 + 64*
     b11*b15*b16*b20 + 384*b12*b13*b14*b15 + 320*b12*b13*b15*b16 + 256*b12*b13*
     b16*b17 + 192*b12*b13*b17*b18 + 128*b12*b13*b18*b19 + 64*b12*b13*b19*b20
      + 256*b12*b14*b15*b17 + 192*b12*b14*b16*b18 + 128*b12*b14*b17*b19 + 64*
     b12*b14*b18*b20 + 128*b12*b15*b16*b19 + 64*b12*b15*b17*b20 + 320*b13*b14*
     b15*b16 + 256*b13*b14*b16*b17 + 192*b13*b14*b17*b18 + 128*b13*b14*b18*b19
      + 64*b13*b14*b19*b20 + 192*b13*b15*b16*b18 + 128*b13*b15*b17*b19 + 64*b13
     *b15*b18*b20 + 64*b13*b16*b17*b20 + 256*b14*b15*b16*b17 + 192*b14*b15*b17*
     b18 + 128*b14*b15*b18*b19 + 64*b14*b15*b19*b20 + 128*b14*b16*b17*b19 + 64*
     b14*b16*b18*b20 + 192*b15*b16*b17*b18 + 128*b15*b16*b18*b19 + 64*b15*b16*
     b19*b20 + 64*b15*b17*b18*b20 + 128*b16*b17*b18*b19 + 64*b16*b17*b19*b20 + 
     64*b17*b18*b19*b20 - 32*b1*b2*b3 - 64*b1*b2*b4 - 64*b1*b2*b5 - 64*b1*b2*b6
      - 64*b1*b2*b7 - 64*b1*b2*b8 - 64*b1*b2*b9 - 32*b1*b2*b10 - 64*b1*b3*b4 - 
     32*b1*b3*b5 - 64*b1*b3*b6 - 64*b1*b3*b7 - 64*b1*b3*b8 - 32*b1*b3*b9 - 32*
     b1*b3*b10 - 64*b1*b4*b5 - 64*b1*b4*b6 - 32*b1*b4*b7 - 32*b1*b4*b8 - 32*b1*
     b4*b9 - 32*b1*b4*b10 - 64*b1*b5*b6 - 32*b1*b5*b7 - 32*b1*b5*b8 - 32*b1*b5*
     b10 - 32*b1*b6*b7 - 32*b1*b6*b8 - 32*b1*b6*b9 - 32*b1*b6*b10 - 32*b1*b7*b8
      - 32*b1*b7*b9 - 32*b1*b7*b10 - 32*b1*b8*b9 - 32*b1*b8*b10 - 32*b1*b9*b10
      - 96*b2*b3*b4 - 128*b2*b3*b5 - 128*b2*b3*b6 - 128*b2*b3*b7 - 128*b2*b3*b8
      - 128*b2*b3*b9 - 96*b2*b3*b10 - 32*b2*b3*b11 - 160*b2*b4*b5 - 64*b2*b4*b6
      - 128*b2*b4*b7 - 128*b2*b4*b8 - 96*b2*b4*b9 - 64*b2*b4*b10 - 32*b2*b4*b11
      - 160*b2*b5*b6 - 128*b2*b5*b7 - 32*b2*b5*b8 - 64*b2*b5*b9 - 64*b2*b5*b10
      - 32*b2*b5*b11 - 128*b2*b6*b7 - 64*b2*b6*b8 - 64*b2*b6*b9 - 32*b2*b6*b11
      - 96*b2*b7*b8 - 64*b2*b7*b9 - 64*b2*b7*b10 - 32*b2*b7*b11 - 96*b2*b8*b9
      - 64*b2*b8*b10 - 32*b2*b8*b11 - 96*b2*b9*b10 - 32*b2*b9*b11 - 32*b2*b10*
     b11 - 160*b3*b4*b5 - 224*b3*b4*b6 - 192*b3*b4*b7 - 192*b3*b4*b8 - 192*b3*
     b4*b9 - 160*b3*b4*b10 - 96*b3*b4*b11 - 32*b3*b4*b12 - 256*b3*b5*b6 - 128*
     b3*b5*b7 - 192*b3*b5*b8 - 160*b3*b5*b9 - 128*b3*b5*b10 - 64*b3*b5*b11 - 32
     *b3*b5*b12 - 256*b3*b6*b7 - 192*b3*b6*b8 - 32*b3*b6*b9 - 96*b3*b6*b10 - 64
     *b3*b6*b11 - 32*b3*b6*b12 - 192*b3*b7*b8 - 128*b3*b7*b9 - 96*b3*b7*b10 - 
     32*b3*b7*b12 - 160*b3*b8*b9 - 128*b3*b8*b10 - 64*b3*b8*b11 - 32*b3*b8*b12
      - 160*b3*b9*b10 - 64*b3*b9*b11 - 32*b3*b9*b12 - 96*b3*b10*b11 - 32*b3*b10
     *b12 - 32*b3*b11*b12 - 224*b4*b5*b6 - 320*b4*b5*b7 - 288*b4*b5*b8 - 256*b4
     *b5*b9 - 224*b4*b5*b10 - 160*b4*b5*b11 - 96*b4*b5*b12 - 32*b4*b5*b13 - 352
     *b4*b6*b7 - 192*b4*b6*b8 - 256*b4*b6*b9 - 192*b4*b6*b10 - 128*b4*b6*b11 - 
     64*b4*b6*b12 - 32*b4*b6*b13 - 320*b4*b7*b8 - 256*b4*b7*b9 - 64*b4*b7*b10
      - 96*b4*b7*b11 - 64*b4*b7*b12 - 32*b4*b7*b13 - 256*b4*b8*b9 - 192*b4*b8*
     b10 - 96*b4*b8*b11 - 32*b4*b8*b13 - 224*b4*b9*b10 - 128*b4*b9*b11 - 64*b4*
     b9*b12 - 32*b4*b9*b13 - 160*b4*b10*b11 - 64*b4*b10*b12 - 32*b4*b10*b13 - 
     96*b4*b11*b12 - 32*b4*b11*b13 - 32*b4*b12*b13 - 288*b5*b6*b7 - 416*b5*b6*
     b8 - 384*b5*b6*b9 - 320*b5*b6*b10 - 224*b5*b6*b11 - 160*b5*b6*b12 - 96*b5*
     b6*b13 - 32*b5*b6*b14 - 448*b5*b7*b8 - 224*b5*b7*b9 - 320*b5*b7*b10 - 192*
     b5*b7*b11 - 128*b5*b7*b12 - 64*b5*b7*b13 - 32*b5*b7*b14 - 384*b5*b8*b9 - 
     320*b5*b8*b10 - 64*b5*b8*b11 - 96*b5*b8*b12 - 64*b5*b8*b13 - 32*b5*b8*b14
      - 320*b5*b9*b10 - 192*b5*b9*b11 - 96*b5*b9*b12 - 32*b5*b9*b14 - 224*b5*
     b10*b11 - 128*b5*b10*b12 - 64*b5*b10*b13 - 32*b5*b10*b14 - 160*b5*b11*b12
      - 64*b5*b11*b13 - 32*b5*b11*b14 - 96*b5*b12*b13 - 32*b5*b12*b14 - 32*b5*
     b13*b14 - 352*b6*b7*b8 - 512*b6*b7*b9 - 448*b6*b7*b10 - 320*b6*b7*b11 - 
     224*b6*b7*b12 - 160*b6*b7*b13 - 96*b6*b7*b14 - 32*b6*b7*b15 - 512*b6*b8*b9
      - 256*b6*b8*b10 - 320*b6*b8*b11 - 192*b6*b8*b12 - 128*b6*b8*b13 - 64*b6*
     b8*b14 - 32*b6*b8*b15 - 448*b6*b9*b10 - 320*b6*b9*b11 - 64*b6*b9*b12 - 96*
     b6*b9*b13 - 64*b6*b9*b14 - 32*b6*b9*b15 - 320*b6*b10*b11 - 192*b6*b10*b12
      - 96*b6*b10*b13 - 32*b6*b10*b15 - 224*b6*b11*b12 - 128*b6*b11*b13 - 64*b6
     *b11*b14 - 32*b6*b11*b15 - 160*b6*b12*b13 - 64*b6*b12*b14 - 32*b6*b12*b15
      - 96*b6*b13*b14 - 32*b6*b13*b15 - 32*b6*b14*b15 - 416*b7*b8*b9 - 576*b7*
     b8*b10 - 448*b7*b8*b11 - 320*b7*b8*b12 - 224*b7*b8*b13 - 160*b7*b8*b14 - 
     96*b7*b8*b15 - 32*b7*b8*b16 - 576*b7*b9*b10 - 256*b7*b9*b11 - 320*b7*b9*
     b12 - 192*b7*b9*b13 - 128*b7*b9*b14 - 64*b7*b9*b15 - 32*b7*b9*b16 - 448*b7
     *b10*b11 - 320*b7*b10*b12 - 64*b7*b10*b13 - 96*b7*b10*b14 - 64*b7*b10*b15
      - 32*b7*b10*b16 - 320*b7*b11*b12 - 192*b7*b11*b13 - 96*b7*b11*b14 - 32*b7
     *b11*b16 - 224*b7*b12*b13 - 128*b7*b12*b14 - 64*b7*b12*b15 - 32*b7*b12*b16
      - 160*b7*b13*b14 - 64*b7*b13*b15 - 32*b7*b13*b16 - 96*b7*b14*b15 - 32*b7*
     b14*b16 - 32*b7*b15*b16 - 448*b8*b9*b10 - 576*b8*b9*b11 - 448*b8*b9*b12 - 
     320*b8*b9*b13 - 224*b8*b9*b14 - 160*b8*b9*b15 - 96*b8*b9*b16 - 32*b8*b9*
     b17 - 576*b8*b10*b11 - 256*b8*b10*b12 - 320*b8*b10*b13 - 192*b8*b10*b14 - 
     128*b8*b10*b15 - 64*b8*b10*b16 - 32*b8*b10*b17 - 448*b8*b11*b12 - 320*b8*
     b11*b13 - 64*b8*b11*b14 - 96*b8*b11*b15 - 64*b8*b11*b16 - 32*b8*b11*b17 - 
     320*b8*b12*b13 - 192*b8*b12*b14 - 96*b8*b12*b15 - 32*b8*b12*b17 - 224*b8*
     b13*b14 - 128*b8*b13*b15 - 64*b8*b13*b16 - 32*b8*b13*b17 - 160*b8*b14*b15
      - 64*b8*b14*b16 - 32*b8*b14*b17 - 96*b8*b15*b16 - 32*b8*b15*b17 - 32*b8*
     b16*b17 - 448*b9*b10*b11 - 576*b9*b10*b12 - 448*b9*b10*b13 - 320*b9*b10*
     b14 - 224*b9*b10*b15 - 160*b9*b10*b16 - 96*b9*b10*b17 - 32*b9*b10*b18 - 
     576*b9*b11*b12 - 256*b9*b11*b13 - 320*b9*b11*b14 - 192*b9*b11*b15 - 128*b9
     *b11*b16 - 64*b9*b11*b17 - 32*b9*b11*b18 - 448*b9*b12*b13 - 320*b9*b12*b14
      - 64*b9*b12*b15 - 96*b9*b12*b16 - 64*b9*b12*b17 - 32*b9*b12*b18 - 320*b9*
     b13*b14 - 192*b9*b13*b15 - 96*b9*b13*b16 - 32*b9*b13*b18 - 224*b9*b14*b15
      - 128*b9*b14*b16 - 64*b9*b14*b17 - 32*b9*b14*b18 - 160*b9*b15*b16 - 64*b9
     *b15*b17 - 32*b9*b15*b18 - 96*b9*b16*b17 - 32*b9*b16*b18 - 32*b9*b17*b18
      - 448*b10*b11*b12 - 576*b10*b11*b13 - 448*b10*b11*b14 - 320*b10*b11*b15
      - 224*b10*b11*b16 - 160*b10*b11*b17 - 96*b10*b11*b18 - 32*b10*b11*b19 - 
     576*b10*b12*b13 - 256*b10*b12*b14 - 320*b10*b12*b15 - 192*b10*b12*b16 - 
     128*b10*b12*b17 - 64*b10*b12*b18 - 32*b10*b12*b19 - 448*b10*b13*b14 - 320*
     b10*b13*b15 - 64*b10*b13*b16 - 96*b10*b13*b17 - 64*b10*b13*b18 - 32*b10*
     b13*b19 - 320*b10*b14*b15 - 192*b10*b14*b16 - 96*b10*b14*b17 - 32*b10*b14*
     b19 - 224*b10*b15*b16 - 128*b10*b15*b17 - 64*b10*b15*b18 - 32*b10*b15*b19
      - 160*b10*b16*b17 - 64*b10*b16*b18 - 32*b10*b16*b19 - 96*b10*b17*b18 - 32
     *b10*b17*b19 - 32*b10*b18*b19 - 448*b11*b12*b13 - 576*b11*b12*b14 - 448*
     b11*b12*b15 - 320*b11*b12*b16 - 224*b11*b12*b17 - 160*b11*b12*b18 - 96*b11
     *b12*b19 - 32*b11*b12*b20 - 576*b11*b13*b14 - 256*b11*b13*b15 - 320*b11*
     b13*b16 - 192*b11*b13*b17 - 128*b11*b13*b18 - 64*b11*b13*b19 - 32*b11*b13*
     b20 - 448*b11*b14*b15 - 320*b11*b14*b16 - 64*b11*b14*b17 - 96*b11*b14*b18
      - 64*b11*b14*b19 - 32*b11*b14*b20 - 320*b11*b15*b16 - 192*b11*b15*b17 - 
     96*b11*b15*b18 - 32*b11*b15*b20 - 224*b11*b16*b17 - 128*b11*b16*b18 - 64*
     b11*b16*b19 - 32*b11*b16*b20 - 160*b11*b17*b18 - 64*b11*b17*b19 - 32*b11*
     b17*b20 - 96*b11*b18*b19 - 32*b11*b18*b20 - 32*b11*b19*b20 - 416*b12*b13*
     b14 - 512*b12*b13*b15 - 384*b12*b13*b16 - 256*b12*b13*b17 - 160*b12*b13*
     b18 - 96*b12*b13*b19 - 32*b12*b13*b20 - 512*b12*b14*b15 - 224*b12*b14*b16
      - 256*b12*b14*b17 - 128*b12*b14*b18 - 64*b12*b14*b19 - 32*b12*b14*b20 - 
     384*b12*b15*b16 - 256*b12*b15*b17 - 32*b12*b15*b18 - 64*b12*b15*b19 - 32*
     b12*b15*b20 - 256*b12*b16*b17 - 160*b12*b16*b18 - 64*b12*b16*b19 - 192*b12
     *b17*b18 - 96*b12*b17*b19 - 32*b12*b17*b20 - 128*b12*b18*b19 - 32*b12*b18*
     b20 - 64*b12*b19*b20 - 352*b13*b14*b15 - 448*b13*b14*b16 - 320*b13*b14*b17
      - 192*b13*b14*b18 - 96*b13*b14*b19 - 32*b13*b14*b20 - 416*b13*b15*b16 - 
     192*b13*b15*b17 - 192*b13*b15*b18 - 64*b13*b15*b19 - 32*b13*b15*b20 - 288*
     b13*b16*b17 - 192*b13*b16*b18 - 32*b13*b16*b19 - 32*b13*b16*b20 - 192*b13*
     b17*b18 - 128*b13*b17*b19 - 32*b13*b17*b20 - 128*b13*b18*b19 - 64*b13*b18*
     b20 - 64*b13*b19*b20 - 288*b14*b15*b16 - 352*b14*b15*b17 - 256*b14*b15*b18
      - 128*b14*b15*b19 - 32*b14*b15*b20 - 320*b14*b16*b17 - 128*b14*b16*b18 - 
     128*b14*b16*b19 - 32*b14*b16*b20 - 192*b14*b17*b18 - 128*b14*b17*b19 - 32*
     b14*b17*b20 - 128*b14*b18*b19 - 64*b14*b18*b20 - 64*b14*b19*b20 - 224*b15*
     b16*b17 - 256*b15*b16*b18 - 160*b15*b16*b19 - 64*b15*b16*b20 - 224*b15*b17
     *b18 - 64*b15*b17*b19 - 64*b15*b17*b20 - 128*b15*b18*b19 - 64*b15*b18*b20
      - 64*b15*b19*b20 - 160*b16*b17*b18 - 160*b16*b17*b19 - 64*b16*b17*b20 - 
     128*b16*b18*b19 - 32*b16*b18*b20 - 64*b16*b19*b20 - 96*b17*b18*b19 - 64*
     b17*b18*b20 - 64*b17*b19*b20 - 32*b18*b19*b20 + 112*b1*b2 + 104*b1*b3 + 96
     *b1*b4 + 88*b1*b5 + 96*b1*b6 + 88*b1*b7 + 80*b1*b8 + 72*b1*b9 + 64*b1*b10
      + 224*b2*b3 + 224*b2*b4 + 208*b2*b5 + 192*b2*b6 + 208*b2*b7 + 192*b2*b8
      + 176*b2*b9 + 144*b2*b10 + 64*b2*b11 + 352*b3*b4 + 344*b3*b5 + 336*b3*b6
      + 328*b3*b7 + 336*b3*b8 + 296*b3*b9 + 256*b3*b10 + 144*b3*b11 + 64*b3*b12
      + 496*b4*b5 + 480*b4*b6 + 464*b4*b7 + 464*b4*b8 + 448*b4*b9 + 384*b4*b10
      + 256*b4*b11 + 144*b4*b12 + 64*b4*b13 + 656*b5*b6 + 616*b5*b7 + 592*b5*b8
      + 568*b5*b9 + 544*b5*b10 + 384*b5*b11 + 256*b5*b12 + 144*b5*b13 + 64*b5*
     b14 + 800*b6*b7 + 736*b6*b8 + 704*b6*b9 + 656*b6*b10 + 544*b6*b11 + 384*b6
     *b12 + 256*b6*b13 + 144*b6*b14 + 64*b6*b15 + 928*b7*b8 + 856*b7*b9 + 800*
     b7*b10 + 656*b7*b11 + 544*b7*b12 + 384*b7*b13 + 256*b7*b14 + 144*b7*b15 + 
     64*b7*b16 + 1040*b8*b9 + 960*b8*b10 + 800*b8*b11 + 656*b8*b12 + 544*b8*b13
      + 384*b8*b14 + 256*b8*b15 + 144*b8*b16 + 64*b8*b17 + 1152*b9*b10 + 960*b9
     *b11 + 800*b9*b12 + 656*b9*b13 + 544*b9*b14 + 384*b9*b15 + 256*b9*b16 + 
     144*b9*b17 + 64*b9*b18 + 1152*b10*b11 + 960*b10*b12 + 800*b10*b13 + 656*
     b10*b14 + 544*b10*b15 + 384*b10*b16 + 256*b10*b17 + 144*b10*b18 + 64*b10*
     b19 + 1152*b11*b12 + 960*b11*b13 + 800*b11*b14 + 656*b11*b15 + 544*b11*b16
      + 384*b11*b17 + 256*b11*b18 + 144*b11*b19 + 64*b11*b20 + 1040*b12*b13 + 
     856*b12*b14 + 704*b12*b15 + 568*b12*b16 + 448*b12*b17 + 296*b12*b18 + 176*
     b12*b19 + 72*b12*b20 + 928*b13*b14 + 736*b13*b15 + 592*b13*b16 + 464*b13*
     b17 + 336*b13*b18 + 192*b13*b19 + 80*b13*b20 + 800*b14*b15 + 616*b14*b16
      + 464*b14*b17 + 328*b14*b18 + 208*b14*b19 + 88*b14*b20 + 656*b15*b16 + 
     480*b15*b17 + 336*b15*b18 + 192*b15*b19 + 96*b15*b20 + 496*b16*b17 + 344*
     b16*b18 + 208*b16*b19 + 88*b16*b20 + 352*b17*b18 + 224*b17*b19 + 96*b17*
     b20 + 224*b18*b19 + 104*b18*b20 + 112*b19*b20 - 144*b1 - 312*b2 - 496*b3
      - 688*b4 - 880*b5 - 1072*b6 - 1264*b7 - 1448*b8 - 1616*b9 - 1760*b10 - 
     1760*b11 - 1616*b12 - 1448*b13 - 1264*b14 - 1072*b15 - 880*b16 - 688*b17
      - 496*b18 - 312*b19 - 144*b20 - objvar =L= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0