MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern25-03
degree-four model for low autocorrelated binary sequences
This instance arises in theoretical physics. Determining a ground
state in the so-called Bernasconi model amounts to minimizing a
degree-four energy function over variables taking values in
{+1,-1}. Here, the energy function is expressed in 0/1 variables. The
model contains symmetries, leading to multiple optimum solutions.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -92.00000009 (ANTIGONE) -92.00000009 (BARON) -92.00000002 (COUENNE) -92.00000008 (CPLEX) -92.00000000 (GUROBI) -92.00000000 (LINDO) -92.00000000 (PQCR) -92.00000000 (SCIP) -92.00000000 (SHOT) |
| Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
| Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.25.3 |
| Applicationⓘ | Autocorrelated Sequences |
| Added to libraryⓘ | 26 Feb 2014 |
| Problem typeⓘ | MBQCP |
| #Variablesⓘ | 26 |
| #Binary Variablesⓘ | 25 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 25 |
| #Nonlinear Binary Variablesⓘ | 25 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 26 |
| #Nonlinear Nonzeros in Jacobianⓘ | 25 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 46 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 2 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 12 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 13 |
| Average blocksize in Hessian of Lagrangianⓘ | 12.5 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 8.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 0 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 26 1 25 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 26 1 25 0
*
* Solve m using MINLP minimizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25;
Equations e1;
e1.. 8*b1*b3 - 4*b1 - 8*b3 + 8*b2*b4 - 4*b2 - 8*b4 + 8*b3*b5 - 8*b5 + 8*b4*b6
- 8*b6 + 8*b5*b7 - 8*b7 + 8*b6*b8 - 8*b8 + 8*b7*b9 - 8*b9 + 8*b8*b10 - 8*
b10 + 8*b9*b11 - 8*b11 + 8*b10*b12 - 8*b12 + 8*b11*b13 - 8*b13 + 8*b12*b14
- 8*b14 + 8*b13*b15 - 8*b15 + 8*b14*b16 - 8*b16 + 8*b15*b17 - 8*b17 + 8*
b16*b18 - 8*b18 + 8*b17*b19 - 8*b19 + 8*b18*b20 - 8*b20 + 8*b19*b21 - 8*
b21 + 8*b20*b22 - 8*b22 + 8*b21*b23 - 8*b23 + 8*b22*b24 - 4*b24 + 8*b23*
b25 - 4*b25 - objvar =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

