MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern25-06
degree-four model for low autocorrelated binary sequences This instance arises in theoretical physics. Determining a ground state in the so-called Bernasconi model amounts to minimizing a degree-four energy function over variables taking values in {+1,-1}. Here, the energy function is expressed in 0/1 variables. The model contains symmetries, leading to multiple optimum solutions.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -960.00000100 (ANTIGONE) -960.00000190 (BARON) -960.00000000 (COUENNE) -1088.00000000 (LINDO) -960.00000000 (PQCR) -960.00000000 (SCIP) -960.00000000 (SHOT) |
Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.25.6 |
Applicationⓘ | Autocorrelated Sequences |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 26 |
#Binary Variablesⓘ | 25 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 25 |
#Nonlinear Binary Variablesⓘ | 25 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 26 |
#Nonlinear Nonzeros in Jacobianⓘ | 25 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 220 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 25 |
Maximal blocksize in Hessian of Lagrangianⓘ | 25 |
Average blocksize in Hessian of Lagrangianⓘ | 25.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.7200e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 26 1 25 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 26 1 25 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25; Equations e1; e1.. 64*b1*b2*b3*b4 + 64*b1*b2*b4*b5 + 64*b1*b2*b5*b6 + 64*b1*b3*b4*b6 + 128*b2 *b3*b4*b5 + 128*b2*b3*b5*b6 + 64*b2*b3*b6*b7 + 64*b2*b4*b5*b7 + 192*b3*b4* b5*b6 + 128*b3*b4*b6*b7 + 64*b3*b4*b7*b8 + 64*b3*b5*b6*b8 + 192*b4*b5*b6* b7 + 128*b4*b5*b7*b8 + 64*b4*b5*b8*b9 + 64*b4*b6*b7*b9 + 192*b5*b6*b7*b8 + 128*b5*b6*b8*b9 + 64*b5*b6*b9*b10 + 64*b5*b7*b8*b10 + 192*b6*b7*b8*b9 + 128*b6*b7*b9*b10 + 64*b6*b7*b10*b11 + 64*b6*b8*b9*b11 + 192*b7*b8*b9* b10 + 128*b7*b8*b10*b11 + 64*b7*b8*b11*b12 + 64*b7*b9*b10*b12 + 192*b8*b9* b10*b11 + 128*b8*b9*b11*b12 + 64*b8*b9*b12*b13 + 64*b8*b10*b11*b13 + 192* b9*b10*b11*b12 + 128*b9*b10*b12*b13 + 64*b9*b10*b13*b14 + 64*b9*b11*b12* b14 + 192*b10*b11*b12*b13 + 128*b10*b11*b13*b14 + 64*b10*b11*b14*b15 + 64* b10*b12*b13*b15 + 192*b11*b12*b13*b14 + 128*b11*b12*b14*b15 + 64*b11*b12* b15*b16 + 64*b11*b13*b14*b16 + 192*b12*b13*b14*b15 + 128*b12*b13*b15*b16 + 64*b12*b13*b16*b17 + 64*b12*b14*b15*b17 + 192*b13*b14*b15*b16 + 128*b13 *b14*b16*b17 + 64*b13*b14*b17*b18 + 64*b13*b15*b16*b18 + 192*b14*b15*b16* b17 + 128*b14*b15*b17*b18 + 64*b14*b15*b18*b19 + 64*b14*b16*b17*b19 + 192* b15*b16*b17*b18 + 128*b15*b16*b18*b19 + 64*b15*b16*b19*b20 + 64*b15*b17* b18*b20 + 192*b16*b17*b18*b19 + 128*b16*b17*b19*b20 + 64*b16*b17*b20*b21 + 64*b16*b18*b19*b21 + 192*b17*b18*b19*b20 + 128*b17*b18*b20*b21 + 64*b17 *b18*b21*b22 + 64*b17*b19*b20*b22 + 192*b18*b19*b20*b21 + 128*b18*b19*b21* b22 + 64*b18*b19*b22*b23 + 64*b18*b20*b21*b23 + 192*b19*b20*b21*b22 + 128* b19*b20*b22*b23 + 64*b19*b20*b23*b24 + 64*b19*b21*b22*b24 + 192*b20*b21* b22*b23 + 128*b20*b21*b23*b24 + 64*b20*b21*b24*b25 + 64*b20*b22*b23*b25 + 128*b21*b22*b23*b24 + 64*b21*b22*b24*b25 + 64*b22*b23*b24*b25 - 32*b1*b2* b3 - 64*b1*b2*b4 - 64*b1*b2*b5 - 32*b1*b2*b6 - 64*b1*b3*b4 - 32*b1*b3*b6 - 32*b1*b4*b5 - 32*b1*b4*b6 - 32*b1*b5*b6 - 96*b2*b3*b4 - 128*b2*b3*b5 - 96*b2*b3*b6 - 32*b2*b3*b7 - 128*b2*b4*b5 - 32*b2*b4*b7 - 96*b2*b5*b6 - 32* b2*b5*b7 - 32*b2*b6*b7 - 160*b3*b4*b5 - 192*b3*b4*b6 - 96*b3*b4*b7 - 32*b3 *b4*b8 - 192*b3*b5*b6 - 32*b3*b5*b8 - 96*b3*b6*b7 - 32*b3*b6*b8 - 32*b3*b7 *b8 - 192*b4*b5*b6 - 192*b4*b5*b7 - 96*b4*b5*b8 - 32*b4*b5*b9 - 192*b4*b6* b7 - 32*b4*b6*b9 - 96*b4*b7*b8 - 32*b4*b7*b9 - 32*b4*b8*b9 - 192*b5*b6*b7 - 192*b5*b6*b8 - 96*b5*b6*b9 - 32*b5*b6*b10 - 192*b5*b7*b8 - 32*b5*b7*b10 - 96*b5*b8*b9 - 32*b5*b8*b10 - 32*b5*b9*b10 - 192*b6*b7*b8 - 192*b6*b7*b9 - 96*b6*b7*b10 - 32*b6*b7*b11 - 192*b6*b8*b9 - 32*b6*b8*b11 - 96*b6*b9* b10 - 32*b6*b9*b11 - 32*b6*b10*b11 - 192*b7*b8*b9 - 192*b7*b8*b10 - 96*b7* b8*b11 - 32*b7*b8*b12 - 192*b7*b9*b10 - 32*b7*b9*b12 - 96*b7*b10*b11 - 32* b7*b10*b12 - 32*b7*b11*b12 - 192*b8*b9*b10 - 192*b8*b9*b11 - 96*b8*b9*b12 - 32*b8*b9*b13 - 192*b8*b10*b11 - 32*b8*b10*b13 - 96*b8*b11*b12 - 32*b8* b11*b13 - 32*b8*b12*b13 - 192*b9*b10*b11 - 192*b9*b10*b12 - 96*b9*b10*b13 - 32*b9*b10*b14 - 192*b9*b11*b12 - 32*b9*b11*b14 - 96*b9*b12*b13 - 32*b9* b12*b14 - 32*b9*b13*b14 - 192*b10*b11*b12 - 192*b10*b11*b13 - 96*b10*b11* b14 - 32*b10*b11*b15 - 192*b10*b12*b13 - 32*b10*b12*b15 - 96*b10*b13*b14 - 32*b10*b13*b15 - 32*b10*b14*b15 - 192*b11*b12*b13 - 192*b11*b12*b14 - 96*b11*b12*b15 - 32*b11*b12*b16 - 192*b11*b13*b14 - 32*b11*b13*b16 - 96* b11*b14*b15 - 32*b11*b14*b16 - 32*b11*b15*b16 - 192*b12*b13*b14 - 192*b12* b13*b15 - 96*b12*b13*b16 - 32*b12*b13*b17 - 192*b12*b14*b15 - 32*b12*b14* b17 - 96*b12*b15*b16 - 32*b12*b15*b17 - 32*b12*b16*b17 - 192*b13*b14*b15 - 192*b13*b14*b16 - 96*b13*b14*b17 - 32*b13*b14*b18 - 192*b13*b15*b16 - 32*b13*b15*b18 - 96*b13*b16*b17 - 32*b13*b16*b18 - 32*b13*b17*b18 - 192* b14*b15*b16 - 192*b14*b15*b17 - 96*b14*b15*b18 - 32*b14*b15*b19 - 192*b14* b16*b17 - 32*b14*b16*b19 - 96*b14*b17*b18 - 32*b14*b17*b19 - 32*b14*b18* b19 - 192*b15*b16*b17 - 192*b15*b16*b18 - 96*b15*b16*b19 - 32*b15*b16*b20 - 192*b15*b17*b18 - 32*b15*b17*b20 - 96*b15*b18*b19 - 32*b15*b18*b20 - 32 *b15*b19*b20 - 192*b16*b17*b18 - 192*b16*b17*b19 - 96*b16*b17*b20 - 32*b16 *b17*b21 - 192*b16*b18*b19 - 32*b16*b18*b21 - 96*b16*b19*b20 - 32*b16*b19* b21 - 32*b16*b20*b21 - 192*b17*b18*b19 - 192*b17*b18*b20 - 96*b17*b18*b21 - 32*b17*b18*b22 - 192*b17*b19*b20 - 32*b17*b19*b22 - 96*b17*b20*b21 - 32 *b17*b20*b22 - 32*b17*b21*b22 - 192*b18*b19*b20 - 192*b18*b19*b21 - 96*b18 *b19*b22 - 32*b18*b19*b23 - 192*b18*b20*b21 - 32*b18*b20*b23 - 96*b18*b21* b22 - 32*b18*b21*b23 - 32*b18*b22*b23 - 192*b19*b20*b21 - 192*b19*b20*b22 - 96*b19*b20*b23 - 32*b19*b20*b24 - 192*b19*b21*b22 - 32*b19*b21*b24 - 96 *b19*b22*b23 - 32*b19*b22*b24 - 32*b19*b23*b24 - 192*b20*b21*b22 - 192*b20 *b21*b23 - 96*b20*b21*b24 - 32*b20*b21*b25 - 192*b20*b22*b23 - 32*b20*b22* b25 - 96*b20*b23*b24 - 32*b20*b23*b25 - 32*b20*b24*b25 - 160*b21*b22*b23 - 128*b21*b22*b24 - 32*b21*b22*b25 - 128*b21*b23*b24 - 64*b21*b24*b25 - 96*b22*b23*b24 - 64*b22*b23*b25 - 64*b22*b24*b25 - 32*b23*b24*b25 + 48*b1* b2 + 40*b1*b3 + 48*b1*b4 + 40*b1*b5 + 32*b1*b6 + 96*b2*b3 + 96*b2*b4 + 112 *b2*b5 + 80*b2*b6 + 32*b2*b7 + 160*b3*b4 + 152*b3*b5 + 160*b3*b6 + 80*b3* b7 + 32*b3*b8 + 208*b4*b5 + 192*b4*b6 + 160*b4*b7 + 80*b4*b8 + 32*b4*b9 + 256*b5*b6 + 192*b5*b7 + 160*b5*b8 + 80*b5*b9 + 32*b5*b10 + 256*b6*b7 + 192 *b6*b8 + 160*b6*b9 + 80*b6*b10 + 32*b6*b11 + 256*b7*b8 + 192*b7*b9 + 160* b7*b10 + 80*b7*b11 + 32*b7*b12 + 256*b8*b9 + 192*b8*b10 + 160*b8*b11 + 80* b8*b12 + 32*b8*b13 + 256*b9*b10 + 192*b9*b11 + 160*b9*b12 + 80*b9*b13 + 32 *b9*b14 + 256*b10*b11 + 192*b10*b12 + 160*b10*b13 + 80*b10*b14 + 32*b10* b15 + 256*b11*b12 + 192*b11*b13 + 160*b11*b14 + 80*b11*b15 + 32*b11*b16 + 256*b12*b13 + 192*b12*b14 + 160*b12*b15 + 80*b12*b16 + 32*b12*b17 + 256* b13*b14 + 192*b13*b15 + 160*b13*b16 + 80*b13*b17 + 32*b13*b18 + 256*b14* b15 + 192*b14*b16 + 160*b14*b17 + 80*b14*b18 + 32*b14*b19 + 256*b15*b16 + 192*b15*b17 + 160*b15*b18 + 80*b15*b19 + 32*b15*b20 + 256*b16*b17 + 192* b16*b18 + 160*b16*b19 + 80*b16*b20 + 32*b16*b21 + 256*b17*b18 + 192*b17* b19 + 160*b17*b20 + 80*b17*b21 + 32*b17*b22 + 256*b18*b19 + 192*b18*b20 + 160*b18*b21 + 80*b18*b22 + 32*b18*b23 + 256*b19*b20 + 192*b19*b21 + 160* b19*b22 + 80*b19*b23 + 32*b19*b24 + 256*b20*b21 + 192*b20*b22 + 160*b20* b23 + 80*b20*b24 + 32*b20*b25 + 208*b21*b22 + 152*b21*b23 + 112*b21*b24 + 40*b21*b25 + 160*b22*b23 + 96*b22*b24 + 48*b22*b25 + 96*b23*b24 + 40*b23* b25 + 48*b24*b25 - 40*b1 - 88*b2 - 136*b3 - 184*b4 - 232*b5 - 272*b6 - 272 *b7 - 272*b8 - 272*b9 - 272*b10 - 272*b11 - 272*b12 - 272*b13 - 272*b14 - 272*b15 - 272*b16 - 272*b17 - 272*b18 - 272*b19 - 272*b20 - 232*b21 - 184* b22 - 136*b23 - 88*b24 - 40*b25 - objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f