MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance autocorr_bern30-04
degree-four model for low autocorrelated binary sequences This instance arises in theoretical physics. Determining a ground state in the so-called Bernasconi model amounts to minimizing a degree-four energy function over variables taking values in {+1,-1}. Here, the energy function is expressed in 0/1 variables. The model contains symmetries, leading to multiple optimum solutions.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -324.00000030 (ANTIGONE) -324.00000030 (BARON) -324.00000000 (COUENNE) -324.00000000 (LINDO) -324.00000000 (PQCR) -324.00000000 (SCIP) -324.00000000 (SHOT) |
Referencesⓘ | Liers, Frauke, Marinari, Enzo, Pagacz, Ulrike, Ricci-Tersenghi, Federico, and Schmitz, Vera, A Non-Disordered Glassy Model with a Tunable Interaction Range, Journal of Statistical Mechanics: Theory and Experiment, 2010, L05003. |
Sourceⓘ | POLIP instance autocorrelated_sequences/bernasconi.30.4 |
Applicationⓘ | Autocorrelated Sequences |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 31 |
#Binary Variablesⓘ | 30 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 30 |
#Nonlinear Binary Variablesⓘ | 30 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 31 |
#Nonlinear Nonzeros in Jacobianⓘ | 30 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 168 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 30 |
Maximal blocksize in Hessian of Lagrangianⓘ | 30 |
Average blocksize in Hessian of Lagrangianⓘ | 30.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 6.4000e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 31 1 30 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 31 1 30 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30; Equations e1; e1.. 64*b1*b2*b3*b4 + 64*b2*b3*b4*b5 + 64*b3*b4*b5*b6 + 64*b4*b5*b6*b7 + 64*b5* b6*b7*b8 + 64*b6*b7*b8*b9 + 64*b7*b8*b9*b10 + 64*b8*b9*b10*b11 + 64*b9*b10 *b11*b12 + 64*b10*b11*b12*b13 + 64*b11*b12*b13*b14 + 64*b12*b13*b14*b15 + 64*b13*b14*b15*b16 + 64*b14*b15*b16*b17 + 64*b15*b16*b17*b18 + 64*b16*b17* b18*b19 + 64*b17*b18*b19*b20 + 64*b18*b19*b20*b21 + 64*b19*b20*b21*b22 + 64*b20*b21*b22*b23 + 64*b21*b22*b23*b24 + 64*b22*b23*b24*b25 + 64*b23*b24* b25*b26 + 64*b24*b25*b26*b27 + 64*b25*b26*b27*b28 + 64*b26*b27*b28*b29 + 64*b27*b28*b29*b30 - 32*b1*b2*b3 - 32*b1*b2*b4 - 32*b1*b3*b4 - 64*b2*b3*b4 - 32*b2*b3*b5 - 32*b2*b4*b5 - 64*b3*b4*b5 - 32*b3*b4*b6 - 32*b3*b5*b6 - 64*b4*b5*b6 - 32*b4*b5*b7 - 32*b4*b6*b7 - 64*b5*b6*b7 - 32*b5*b6*b8 - 32* b5*b7*b8 - 64*b6*b7*b8 - 32*b6*b7*b9 - 32*b6*b8*b9 - 64*b7*b8*b9 - 32*b7* b8*b10 - 32*b7*b9*b10 - 64*b8*b9*b10 - 32*b8*b9*b11 - 32*b8*b10*b11 - 64* b9*b10*b11 - 32*b9*b10*b12 - 32*b9*b11*b12 - 64*b10*b11*b12 - 32*b10*b11* b13 - 32*b10*b12*b13 - 64*b11*b12*b13 - 32*b11*b12*b14 - 32*b11*b13*b14 - 64*b12*b13*b14 - 32*b12*b13*b15 - 32*b12*b14*b15 - 64*b13*b14*b15 - 32*b13 *b14*b16 - 32*b13*b15*b16 - 64*b14*b15*b16 - 32*b14*b15*b17 - 32*b14*b16* b17 - 64*b15*b16*b17 - 32*b15*b16*b18 - 32*b15*b17*b18 - 64*b16*b17*b18 - 32*b16*b17*b19 - 32*b16*b18*b19 - 64*b17*b18*b19 - 32*b17*b18*b20 - 32*b17 *b19*b20 - 64*b18*b19*b20 - 32*b18*b19*b21 - 32*b18*b20*b21 - 64*b19*b20* b21 - 32*b19*b20*b22 - 32*b19*b21*b22 - 64*b20*b21*b22 - 32*b20*b21*b23 - 32*b20*b22*b23 - 64*b21*b22*b23 - 32*b21*b22*b24 - 32*b21*b23*b24 - 64*b22 *b23*b24 - 32*b22*b23*b25 - 32*b22*b24*b25 - 64*b23*b24*b25 - 32*b23*b24* b26 - 32*b23*b25*b26 - 64*b24*b25*b26 - 32*b24*b25*b27 - 32*b24*b26*b27 - 64*b25*b26*b27 - 32*b25*b26*b28 - 32*b25*b27*b28 - 64*b26*b27*b28 - 32*b26 *b27*b29 - 32*b26*b28*b29 - 64*b27*b28*b29 - 32*b27*b28*b30 - 32*b27*b29* b30 - 32*b28*b29*b30 + 16*b1*b2 + 24*b1*b3 + 16*b1*b4 + 32*b2*b3 + 48*b2* b4 + 16*b2*b5 + 48*b3*b4 + 48*b3*b5 + 16*b3*b6 + 48*b4*b5 + 48*b4*b6 + 16* b4*b7 + 48*b5*b6 + 48*b5*b7 + 16*b5*b8 + 48*b6*b7 + 48*b6*b8 + 16*b6*b9 + 48*b7*b8 + 48*b7*b9 + 16*b7*b10 + 48*b8*b9 + 48*b8*b10 + 16*b8*b11 + 48*b9 *b10 + 48*b9*b11 + 16*b9*b12 + 48*b10*b11 + 48*b10*b12 + 16*b10*b13 + 48* b11*b12 + 48*b11*b13 + 16*b11*b14 + 48*b12*b13 + 48*b12*b14 + 16*b12*b15 + 48*b13*b14 + 48*b13*b15 + 16*b13*b16 + 48*b14*b15 + 48*b14*b16 + 16*b14 *b17 + 48*b15*b16 + 48*b15*b17 + 16*b15*b18 + 48*b16*b17 + 48*b16*b18 + 16 *b16*b19 + 48*b17*b18 + 48*b17*b19 + 16*b17*b20 + 48*b18*b19 + 48*b18*b20 + 16*b18*b21 + 48*b19*b20 + 48*b19*b21 + 16*b19*b22 + 48*b20*b21 + 48*b20 *b22 + 16*b20*b23 + 48*b21*b22 + 48*b21*b23 + 16*b21*b24 + 48*b22*b23 + 48 *b22*b24 + 16*b22*b25 + 48*b23*b24 + 48*b23*b25 + 16*b23*b26 + 48*b24*b25 + 48*b24*b26 + 16*b24*b27 + 48*b25*b26 + 48*b25*b27 + 16*b25*b28 + 48*b26 *b27 + 48*b26*b28 + 16*b26*b29 + 48*b27*b28 + 48*b27*b29 + 16*b27*b30 + 32 *b28*b29 + 24*b28*b30 + 16*b29*b30 - 12*b1 - 24*b2 - 36*b3 - 48*b4 - 48*b5 - 48*b6 - 48*b7 - 48*b8 - 48*b9 - 48*b10 - 48*b11 - 48*b12 - 48*b13 - 48* b14 - 48*b15 - 48*b16 - 48*b17 - 48*b18 - 48*b19 - 48*b20 - 48*b21 - 48* b22 - 48*b23 - 48*b24 - 48*b25 - 48*b26 - 48*b27 - 36*b28 - 24*b29 - 12* b30 - objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f