MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ball_mk3_30
A simple MINLP with a feasible set described by a ball. The basic model over which these variations are made is: min sum_i=1^n x_i s.t. sum_i=1^n (x_i - 0.5)^2 <= (n-1)/4 x integer between -1 and 1. Obvisouly, this problem is infeasible and has no solution. It can be shown that any outer-approximation based method will need 2^n linear inequalities to show infeasibility, see reference. In this instance, the ball is an empty ellipse, but the quadratic form is still diagonal.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -32.38870966 (ALPHAECP) inf (ANTIGONE) -24.00000000 (BARON) -26.18503375 (BONMIN) inf (COUENNE) inf (CPLEX) inf (GUROBI) inf (LINDO) inf (SCIP) inf (SHOT) |
Referencesⓘ | Hijazi, Hassan, Bonami, Pierre, and Ouorou, Adam, An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs, INFORMS Journal on Computing, 26:1, 2014, 31-44. |
Sourceⓘ | Pierre Bonami |
Applicationⓘ | Geometry |
Added to libraryⓘ | 11 Sep 2017 |
Problem typeⓘ | IQCP |
#Variablesⓘ | 30 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 30 |
#Nonlinear Variablesⓘ | 30 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 30 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 30 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 30 |
#Nonlinear Nonzeros in Jacobianⓘ | 30 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 30 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 30 |
#Blocks in Hessian of Lagrangianⓘ | 30 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.2539e-03 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 0.0001 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 2 1 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 31 1 0 30 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 61 31 30 0 * * Solve m using MINLP minimizing objvar; Variables objvar,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18 ,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31; Integer Variables i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18 ,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31; Equations e1,e2; e1.. objvar + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13 + i14 + i15 + i16 + i17 + i18 + i19 + i20 + i21 + i22 + i23 + i24 + i25 + i26 + i27 + i28 + i29 + i30 + i31 =E= 0; e2.. 0.0394468602581308*sqr(i30) - 0.0394468602581308*i30 + 0.016482781963216* sqr(i29) - 0.016482781963216*i29 + 0.0565703047972114*sqr(i28) - 0.0565703047972114*i28 + 0.0585014464120386*sqr(i27) - 0.0585014464120386* i27 + 0.0118746308986698*sqr(i26) - 0.0118746308986698*i26 + 0.0451913403894453*sqr(i25) - 0.0451913403894453*i25 + 0.0362882980369683* sqr(i24) - 0.0362882980369683*i24 + 0.0204948265573191*sqr(i23) - 0.0204948265573191*i23 + 0.0252301288903778*sqr(i22) - 0.0252301288903778* i22 + 0.0283867992035166*sqr(i21) - 0.0283867992035166*i21 + 0.0425137327561133*sqr(i20) - 0.0425137327561133*i20 + 0.037617677558166* sqr(i19) - 0.037617677558166*i19 + 0.0576726558598861*sqr(i18) - 0.0576726558598861*i18 + 0.0259924550955063*sqr(i17) - 0.0259924550955063* i17 + 0.00625392202854311*sqr(i16) - 0.00625392202854311*i16 + 0.0474635696658564*sqr(i15) - 0.0474635696658564*i15 + 0.030733721879364* sqr(i14) - 0.030733721879364*i14 + 0.015401148979499*sqr(i13) - 0.015401148979499*i13 + 0.049224183717334*sqr(i12) - 0.049224183717334*i12 + 0.0519656343340015*sqr(i11) - 0.0519656343340015*i11 + 0.0384040110374736*sqr(i10) - 0.0384040110374736*i10 + 0.0172067356549738* sqr(i9) - 0.0172067356549738*i9 + 0.019974781798624*sqr(i8) - 0.019974781798624*i8 + 0.0352372440378746*sqr(i7) - 0.0352372440378746*i7 + 0.0152163994975552*sqr(i6) - 0.0152163994975552*i6 + 0.0075711399569244 *sqr(i5) - 0.0075711399569244*i5 + 0.0243048911732161*sqr(i4) - 0.0243048911732161*i4 + 0.0502208123501935*sqr(i3) - 0.0502208123501935*i3 + 0.041161312091797*sqr(i2) - 0.041161312091797*i2 + 0.0473965531202045* sqr(i31) - 0.0473965531202045*i31 =L= -9.99999999999612E-5; * set non-default bounds i2.lo = -1; i2.up = 2; i3.lo = -1; i3.up = 2; i4.lo = -1; i4.up = 2; i5.lo = -1; i5.up = 2; i6.lo = -1; i6.up = 2; i7.lo = -1; i7.up = 2; i8.lo = -1; i8.up = 2; i9.lo = -1; i9.up = 2; i10.lo = -1; i10.up = 2; i11.lo = -1; i11.up = 2; i12.lo = -1; i12.up = 2; i13.lo = -1; i13.up = 2; i14.lo = -1; i14.up = 2; i15.lo = -1; i15.up = 2; i16.lo = -1; i16.up = 2; i17.lo = -1; i17.up = 2; i18.lo = -1; i18.up = 2; i19.lo = -1; i19.up = 2; i20.lo = -1; i20.up = 2; i21.lo = -1; i21.up = 2; i22.lo = -1; i22.up = 2; i23.lo = -1; i23.up = 2; i24.lo = -1; i24.up = 2; i25.lo = -1; i25.up = 2; i26.lo = -1; i26.up = 2; i27.lo = -1; i27.up = 2; i28.lo = -1; i28.up = 2; i29.lo = -1; i29.up = 2; i30.lo = -1; i30.up = 2; i31.lo = -1; i31.up = 2; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f