MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance cesam2cent
Illustrates a cross entropy technique for estimating the cells of a consistent SAM assuming that the initial data are inconsistent and measured with error.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | |
| Referencesⓘ | Robinson, S, Cattaneo, A, and El-Said, M, Updating and Estimating a Social Accounting Matrix Using Cross Entropy Methods, Economic Systems Research, 13:1, 2001, 47-64. Golan, A, Judge, G, and Miller, D, Maximum Entropy Econometrics, John Wiley and Sons, 1996. Judge, G and Mittelhammer, R C, An Information Theoretic Approach to Econometrics, Cambridge University Press, New York, NY, 2012. |
| Sourceⓘ | GAMS Model Library model cesam2 |
| Applicationⓘ | Social Accounting Matrix Balancing |
| Added to libraryⓘ | 18 Aug 2014 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 316 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 207 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | nonconcave |
| #Nonzeros in Objectiveⓘ | 157 |
| #Nonlinear Nonzeros in Objectiveⓘ | 157 |
| #Constraintsⓘ | 165 |
| #Linear Constraintsⓘ | 124 |
| #Quadratic Constraintsⓘ | 28 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 13 |
| Operands in Gen. Nonlin. Functionsⓘ | centropy exp |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 663 |
| #Nonlinear Nonzeros in Jacobianⓘ | 69 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 226 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 170 |
| #Blocks in Hessian of Lagrangianⓘ | 179 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 6 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.156425 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.4525e-04 |
| Maximal coefficientⓘ | 1.1121e+01 |
| Infeasibility of initial pointⓘ | 0.3965 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 166 166 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 317 317 0 0 0 0 0 0
* FX 53
*
* Nonzero counts
* Total const NL DLL
* 821 595 226 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233
,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246
,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259
,x260,x261,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272
,x273,x274,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285
,x286,x287,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298
,x299,x300,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311
,x312,x313,x314,x315,x316,objvar;
Positive Variables x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170
,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181,x182,x183
,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194,x195,x196
,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207,x208,x209
,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222
,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233,x234,x235
,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246,x247,x248
,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259,x260,x261
,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272,x273,x274
,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285,x286,x287
,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298,x299,x300
,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311,x312,x313
,x314,x315,x316;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166;
e1.. x112 - x121 =E= 18.4364105;
e2.. x113 - x122 =E= 21.1551365;
e3.. x114 - x123 =E= 9.78976;
e4.. x115 - x124 =E= 3.673953;
e5.. x116 - x125 =E= 9.6863185;
e6.. x117 - x126 =E= 1.3701;
e7.. x118 - x127 =E= 1.9123;
e8.. x119 - x128 =E= 2.398969;
e9.. x120 - x129 =E= 5.5690645;
e10.. x29 + x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 - x112 =E= 0;
e11.. x38 + x39 + x40 + x41 + x42 + x43 + x44 + x45 + x46 - x113 =E= 0;
e12.. x47 + x48 + x49 + x50 + x51 + x52 + x53 + x54 + x55 - x114 =E= 0;
e13.. x56 + x57 + x58 + x59 + x60 + x61 + x62 + x63 + x64 - x115 =E= 0;
e14.. x65 + x66 + x67 + x68 + x69 + x70 + x71 + x72 + x73 - x116 =E= 0;
e15.. x74 + x75 + x76 + x77 + x78 + x79 + x80 + x81 + x82 - x117 =E= 0;
e16.. x83 + x84 + x85 + x86 + x87 + x88 + x89 + x90 + x91 - x118 =E= 0;
e17.. x92 + x93 + x94 + x95 + x96 + x97 + x98 + x99 + x100 - x119 =E= 0;
e18.. x101 + x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 - x120
=E= 0;
e19.. x29 + x38 + x47 + x56 + x65 + x74 + x83 + x92 + x101 - x112 =E= 0;
e20.. x30 + x39 + x48 + x57 + x66 + x75 + x84 + x93 + x102 - x113 =E= 0;
e21.. x31 + x40 + x49 + x58 + x67 + x76 + x85 + x94 + x103 - x114 =E= 0;
e22.. x32 + x41 + x50 + x59 + x68 + x77 + x86 + x95 + x104 - x115 =E= 0;
e23.. x33 + x42 + x51 + x60 + x69 + x78 + x87 + x96 + x105 - x116 =E= 0;
e24.. x34 + x43 + x52 + x61 + x70 + x79 + x88 + x97 + x106 - x117 =E= 0;
e25.. x35 + x44 + x53 + x62 + x71 + x80 + x89 + x98 + x107 - x118 =E= 0;
e26.. x36 + x45 + x54 + x63 + x72 + x81 + x90 + x99 + x108 - x119 =E= 0;
e27.. x37 + x46 + x55 + x64 + x73 + x82 + x91 + x100 + x109 - x120 =E= 0;
e28.. -x1*x113 + x30 =E= 0;
e29.. -x2*x116 + x33 =E= 0;
e30.. -x3*x117 + x34 =E= 0;
e31.. -x4*x120 + x37 =E= 0;
e32.. -x5*x112 + x38 =E= 0;
e33.. -x6*x116 + x42 =E= 0;
e34.. -x7*x117 + x43 =E= 0;
e35.. -x8*x118 + x44 =E= 0;
e36.. -x9*x119 + x45 =E= 0;
e37.. -x10*x112 + x47 =E= 0;
e38.. -x11*x114 + x58 =E= 0;
e39.. -x12*x117 + x61 =E= 0;
e40.. -x13*x114 + x67 =E= 0;
e41.. -x14*x115 + x68 =E= 0;
e42.. -x15*x117 + x70 =E= 0;
e43.. -x16*x120 + x73 =E= 0;
e44.. -x17*x112 + x74 =E= 0;
e45.. -x18*x113 + x75 =E= 0;
e46.. -x19*x114 + x76 =E= 0;
e47.. -x20*x115 + x77 =E= 0;
e48.. -x21*x116 + x78 =E= 0;
e49.. -x22*x120 + x91 =E= 0;
e50.. -x23*x115 + x95 =E= 0;
e51.. -x24*x116 + x96 =E= 0;
e52.. -x25*x117 + x97 =E= 0;
e53.. -x26*x118 + x98 =E= 0;
e54.. -x27*x120 + x100 =E= 0;
e55.. -x28*x113 + x102 =E= 0;
e56.. x30 - x132 =E= 14.827424;
e57.. x34 - x134 =E= -0.000327;
e58.. x37 - x135 =E= 1.488157;
e59.. x43 - x138 =E= 1.5645;
e60.. x44 - x139 =E= 2.5185;
e61.. x45 - x140 =E= 2.597798;
e62.. x61 - x143 =E= 0.033;
e63.. x70 - x146 =E= 0.0296;
e64.. x73 - x147 =E= 0.2;
e65.. x75 - x149 =E= 0.3574;
e66.. x91 - x153 =E= 1.7123;
e67.. x97 - x156 =E= -0.356673;
e68.. x98 - x157 =E= -0.4062;
e69.. x100 - x158 =E= 2.163857;
e70.. x102 - x159 =E= 5.573815;
e71.. -0.213455359357076*exp(x133) + x2 =E= 0;
e72.. -0.428981457932639*exp(x136) + x5 =E= 0;
e73.. -0.706421402256235*exp(x137) + x6 =E= 0;
e74.. -0.531271066405917*exp(x141) + x10 =E= 0;
e75.. -0.37852116602787*exp(x142) + x11 =E= 0;
e76.. -0.613866884603052*exp(x144) + x13 =E= 0;
e77.. -0.912812569152467*exp(x145) + x14 =E= 0;
e78.. -0.0397474756614438*exp(x148) + x17 =E= 0;
e79.. -0.00761194936907785*exp(x150) + x19 =E= 0;
e80.. -0.0456959504315114*exp(x151) + x20 =E= 0;
e81.. -0.0141724551070975*exp(x152) + x21 =E= 0;
e82.. -0.0414914804160212*exp(x154) + x23 =E= 0;
e83.. -0.0659507832795914*exp(x155) + x24 =E= 0;
e84.. - x47 + x110 =E= 0;
e85.. x34 - x47 - x74 - x75 + x111 =E= 0;
e86.. x110 - x130 =E= 9.805414;
e87.. x111 - x131 =E= 10.896741;
e88.. x121 + 2.765461575*x160 + 1.84364105*x161 + 0.921820525*x162
- 0.921820525*x164 - 1.84364105*x165 - 2.765461575*x166 =E= 0;
e89.. x122 + 3.173270475*x167 + 2.11551365*x168 + 1.057756825*x169
- 1.057756825*x171 - 2.11551365*x172 - 3.173270475*x173 =E= 0;
e90.. x123 + 1.468464*x174 + 0.978976*x175 + 0.489488*x176 - 0.489488*x178
- 0.978976*x179 - 1.468464*x180 =E= 0;
e91.. x124 + 0.55109295*x181 + 0.3673953*x182 + 0.18369765*x183
- 0.18369765*x185 - 0.3673953*x186 - 0.55109295*x187 =E= 0;
e92.. x125 + 1.452947775*x188 + 0.96863185*x189 + 0.484315925*x190
- 0.484315925*x192 - 0.96863185*x193 - 1.452947775*x194 =E= 0;
e93.. x126 + 0.205515*x195 + 0.13701*x196 + 0.068505*x197 - 0.068505*x199
- 0.13701*x200 - 0.205515*x201 =E= 0;
e94.. x127 + 0.286845*x202 + 0.19123*x203 + 0.095615*x204 - 0.095615*x206
- 0.19123*x207 - 0.286845*x208 =E= 0;
e95.. x128 + 0.35984535*x209 + 0.2398969*x210 + 0.11994845*x211
- 0.11994845*x213 - 0.2398969*x214 - 0.35984535*x215 =E= 0;
e96.. x129 + 0.835359675*x216 + 0.55690645*x217 + 0.278453225*x218
- 0.278453225*x220 - 0.55690645*x221 - 0.835359675*x222 =E= 0;
e97.. x130 + 1.4708121*x223 + 0.73540605*x224 - 0.73540605*x226
- 1.4708121*x227 =E= 0;
e98.. x131 + 1.63451115*x228 + 0.817255575*x229 - 0.817255575*x231
- 1.63451115*x232 =E= 0;
e99.. x132 + 11.120568*x233 - 11.120568*x235 =E= 0;
e100.. x133 + 0.75*x236 - 0.75*x238 =E= 0;
e101.. x134 + 0.00024525*x239 - 0.00024525*x241 =E= 0;
e102.. x135 + 1.11611775*x242 - 1.11611775*x244 =E= 0;
e103.. x136 + 0.75*x245 - 0.75*x247 =E= 0;
e104.. x137 + 0.75*x248 - 0.75*x250 =E= 0;
e105.. x138 + 1.173375*x251 - 1.173375*x253 =E= 0;
e106.. x139 + 1.888875*x254 - 1.888875*x256 =E= 0;
e107.. x140 + 1.9483485*x257 - 1.9483485*x259 =E= 0;
e108.. x141 + 0.75*x260 - 0.75*x262 =E= 0;
e109.. x142 + 0.75*x263 - 0.75*x265 =E= 0;
e110.. x143 + 0.02475*x266 - 0.02475*x268 =E= 0;
e111.. x144 + 0.75*x269 - 0.75*x271 =E= 0;
e112.. x145 + 0.75*x272 - 0.75*x274 =E= 0;
e113.. x146 + 0.0222*x275 - 0.0222*x277 =E= 0;
e114.. x147 + 0.15*x278 - 0.15*x280 =E= 0;
e115.. x148 + 0.75*x281 - 0.75*x283 =E= 0;
e116.. x149 + 0.26805*x284 - 0.26805*x286 =E= 0;
e117.. x150 + 0.75*x287 - 0.75*x289 =E= 0;
e118.. x151 + 0.75*x290 - 0.75*x292 =E= 0;
e119.. x152 + 0.75*x293 - 0.75*x295 =E= 0;
e120.. x153 + 1.284225*x296 - 1.284225*x298 =E= 0;
e121.. x154 + 0.75*x299 - 0.75*x301 =E= 0;
e122.. x155 + 0.75*x302 - 0.75*x304 =E= 0;
e123.. x156 + 0.26750475*x305 - 0.26750475*x307 =E= 0;
e124.. x157 + 0.30465*x308 - 0.30465*x310 =E= 0;
e125.. x158 + 1.62289275*x311 - 1.62289275*x313 =E= 0;
e126.. x159 + 4.18036125*x314 - 4.18036125*x316 =E= 0;
e127.. x160 + x161 + x162 + x163 + x164 + x165 + x166 =E= 1;
e128.. x167 + x168 + x169 + x170 + x171 + x172 + x173 =E= 1;
e129.. x174 + x175 + x176 + x177 + x178 + x179 + x180 =E= 1;
e130.. x181 + x182 + x183 + x184 + x185 + x186 + x187 =E= 1;
e131.. x188 + x189 + x190 + x191 + x192 + x193 + x194 =E= 1;
e132.. x195 + x196 + x197 + x198 + x199 + x200 + x201 =E= 1;
e133.. x202 + x203 + x204 + x205 + x206 + x207 + x208 =E= 1;
e134.. x209 + x210 + x211 + x212 + x213 + x214 + x215 =E= 1;
e135.. x216 + x217 + x218 + x219 + x220 + x221 + x222 =E= 1;
e136.. x223 + x224 + x225 + x226 + x227 =E= 1;
e137.. x228 + x229 + x230 + x231 + x232 =E= 1;
e138.. x233 + x234 + x235 =E= 1;
e139.. x236 + x237 + x238 =E= 1;
e140.. x239 + x240 + x241 =E= 1;
e141.. x242 + x243 + x244 =E= 1;
e142.. x245 + x246 + x247 =E= 1;
e143.. x248 + x249 + x250 =E= 1;
e144.. x251 + x252 + x253 =E= 1;
e145.. x254 + x255 + x256 =E= 1;
e146.. x257 + x258 + x259 =E= 1;
e147.. x260 + x261 + x262 =E= 1;
e148.. x263 + x264 + x265 =E= 1;
e149.. x266 + x267 + x268 =E= 1;
e150.. x269 + x270 + x271 =E= 1;
e151.. x272 + x273 + x274 =E= 1;
e152.. x275 + x276 + x277 =E= 1;
e153.. x278 + x279 + x280 =E= 1;
e154.. x281 + x282 + x283 =E= 1;
e155.. x284 + x285 + x286 =E= 1;
e156.. x287 + x288 + x289 =E= 1;
e157.. x290 + x291 + x292 =E= 1;
e158.. x293 + x294 + x295 =E= 1;
e159.. x296 + x297 + x298 =E= 1;
e160.. x299 + x300 + x301 =E= 1;
e161.. x302 + x303 + x304 =E= 1;
e162.. x305 + x306 + x307 =E= 1;
e163.. x308 + x309 + x310 =E= 1;
e164.. x311 + x312 + x313 =E= 1;
e165.. x314 + x315 + x316 =E= 1;
e166.. -(Centropy(x233,0.0555555555555556) + Centropy(x234,0.888888888888889)
+ Centropy(x235,0.0555555555555556) + Centropy(x236,0.0555555555555556)
+ Centropy(x237,0.888888888888889) + Centropy(x238,0.0555555555555556)
+ Centropy(x239,0.0555555555555556) + Centropy(x240,0.888888888888889)
+ Centropy(x241,0.0555555555555556) + Centropy(x242,0.0555555555555556)
+ Centropy(x243,0.888888888888889) + Centropy(x244,0.0555555555555556)
+ Centropy(x245,0.0555555555555556) + Centropy(x246,0.888888888888889)
+ Centropy(x247,0.0555555555555556) + Centropy(x248,0.0555555555555556)
+ Centropy(x249,0.888888888888889) + Centropy(x250,0.0555555555555556)
+ Centropy(x251,0.0555555555555556) + Centropy(x252,0.888888888888889)
+ Centropy(x253,0.0555555555555556) + Centropy(x254,0.0555555555555556)
+ Centropy(x255,0.888888888888889) + Centropy(x256,0.0555555555555556)
+ Centropy(x257,0.0555555555555556) + Centropy(x258,0.888888888888889)
+ Centropy(x259,0.0555555555555556) + Centropy(x260,0.0555555555555556)
+ Centropy(x261,0.888888888888889) + Centropy(x262,0.0555555555555556)
+ Centropy(x263,0.0555555555555556) + Centropy(x264,0.888888888888889)
+ Centropy(x265,0.0555555555555556) + Centropy(x266,0.0555555555555556)
+ Centropy(x267,0.888888888888889) + Centropy(x268,0.0555555555555556)
+ Centropy(x269,0.0555555555555556) + Centropy(x270,0.888888888888889)
+ Centropy(x271,0.0555555555555556) + Centropy(x272,0.0555555555555556)
+ Centropy(x273,0.888888888888889) + Centropy(x274,0.0555555555555556)
+ Centropy(x275,0.0555555555555556) + Centropy(x276,0.888888888888889)
+ Centropy(x277,0.0555555555555556) + Centropy(x278,0.0555555555555556)
+ Centropy(x279,0.888888888888889) + Centropy(x280,0.0555555555555556)
+ Centropy(x281,0.0555555555555556) + Centropy(x282,0.888888888888889)
+ Centropy(x283,0.0555555555555556) + Centropy(x284,0.0555555555555556)
+ Centropy(x285,0.888888888888889) + Centropy(x286,0.0555555555555556)
+ Centropy(x287,0.0555555555555556) + Centropy(x288,0.888888888888889)
+ Centropy(x289,0.0555555555555556) + Centropy(x290,0.0555555555555556)
+ Centropy(x291,0.888888888888889) + Centropy(x292,0.0555555555555556)
+ Centropy(x293,0.0555555555555556) + Centropy(x294,0.888888888888889)
+ Centropy(x295,0.0555555555555556) + Centropy(x296,0.0555555555555556)
+ Centropy(x297,0.888888888888889) + Centropy(x298,0.0555555555555556)
+ Centropy(x299,0.0555555555555556) + Centropy(x300,0.888888888888889)
+ Centropy(x301,0.0555555555555556) + Centropy(x302,0.0555555555555556)
+ Centropy(x303,0.888888888888889) + Centropy(x304,0.0555555555555556)
+ Centropy(x305,0.0555555555555556) + Centropy(x306,0.888888888888889)
+ Centropy(x307,0.0555555555555556) + Centropy(x308,0.0555555555555556)
+ Centropy(x309,0.888888888888889) + Centropy(x310,0.0555555555555556)
+ Centropy(x311,0.0555555555555556) + Centropy(x312,0.888888888888889)
+ Centropy(x313,0.0555555555555556) + Centropy(x314,0.0555555555555556)
+ Centropy(x315,0.888888888888889) + Centropy(x316,0.0555555555555556)
+ Centropy(x160,0.142857142857143) + Centropy(x161,0.142857142857143)
+ Centropy(x162,0.142857142857143) + Centropy(x163,0.142857142857143)
+ Centropy(x164,0.142857142857143) + Centropy(x165,0.142857142857143)
+ Centropy(x166,0.142857142857143) + Centropy(x167,0.142857142857143)
+ Centropy(x168,0.142857142857143) + Centropy(x169,0.142857142857143)
+ Centropy(x170,0.142857142857143) + Centropy(x171,0.142857142857143)
+ Centropy(x172,0.142857142857143) + Centropy(x173,0.142857142857143)
+ Centropy(x174,0.142857142857143) + Centropy(x175,0.142857142857143)
+ Centropy(x176,0.142857142857143) + Centropy(x177,0.142857142857143)
+ Centropy(x178,0.142857142857143) + Centropy(x179,0.142857142857143)
+ Centropy(x180,0.142857142857143) + Centropy(x181,0.142857142857143)
+ Centropy(x182,0.142857142857143) + Centropy(x183,0.142857142857143)
+ Centropy(x184,0.142857142857143) + Centropy(x185,0.142857142857143)
+ Centropy(x186,0.142857142857143) + Centropy(x187,0.142857142857143)
+ Centropy(x188,0.142857142857143) + Centropy(x189,0.142857142857143)
+ Centropy(x190,0.142857142857143) + Centropy(x191,0.142857142857143)
+ Centropy(x192,0.142857142857143) + Centropy(x193,0.142857142857143)
+ Centropy(x194,0.142857142857143) + Centropy(x195,0.142857142857143)
+ Centropy(x196,0.142857142857143) + Centropy(x197,0.142857142857143)
+ Centropy(x198,0.142857142857143) + Centropy(x199,0.142857142857143)
+ Centropy(x200,0.142857142857143) + Centropy(x201,0.142857142857143)
+ Centropy(x202,0.142857142857143) + Centropy(x203,0.142857142857143)
+ Centropy(x204,0.142857142857143) + Centropy(x205,0.142857142857143)
+ Centropy(x206,0.142857142857143) + Centropy(x207,0.142857142857143)
+ Centropy(x208,0.142857142857143) + Centropy(x209,0.142857142857143)
+ Centropy(x210,0.142857142857143) + Centropy(x211,0.142857142857143)
+ Centropy(x212,0.142857142857143) + Centropy(x213,0.142857142857143)
+ Centropy(x214,0.142857142857143) + Centropy(x215,0.142857142857143)
+ Centropy(x216,0.142857142857143) + Centropy(x217,0.142857142857143)
+ Centropy(x218,0.142857142857143) + Centropy(x219,0.142857142857143)
+ Centropy(x220,0.142857142857143) + Centropy(x221,0.142857142857143)
+ Centropy(x222,0.142857142857143) + Centropy(x223,0.00617283950617284)
+ Centropy(x224,0.197530864197531) + Centropy(x225,0.592592592592593)
+ Centropy(x226,0.197530864197531) + Centropy(x227,0.00617283950617284)
+ Centropy(x228,0.00617283950617284) + Centropy(x229,0.197530864197531)
+ Centropy(x230,0.592592592592593) + Centropy(x231,0.197530864197531)
+ Centropy(x232,0.00617283950617284)) + objvar =E= 0;
* set non-default bounds
x29.fx = 0;
x31.fx = 0;
x32.fx = 0;
x35.fx = 0;
x36.fx = 0;
x39.fx = 0;
x40.fx = 0;
x41.fx = 0;
x46.fx = 0;
x48.fx = 0;
x49.fx = 0;
x50.fx = 0;
x51.fx = 0;
x52.fx = 0;
x53.fx = 0;
x54.fx = 0;
x55.fx = 0;
x56.fx = 0;
x57.fx = 0;
x59.fx = 0;
x60.fx = 0;
x62.fx = 0;
x63.fx = 0;
x64.fx = 0;
x65.fx = 0;
x66.fx = 0;
x69.fx = 0;
x71.fx = 0;
x72.fx = 0;
x79.fx = 0;
x80.fx = 0;
x81.fx = 0;
x82.fx = 0;
x83.fx = 0;
x84.fx = 0;
x85.fx = 0;
x86.fx = 0;
x87.fx = 0;
x88.fx = 0;
x89.fx = 0;
x90.fx = 0;
x92.fx = 0;
x93.fx = 0;
x94.fx = 0;
x99.fx = 0;
x101.fx = 0;
x103.fx = 0;
x104.fx = 0;
x105.fx = 0;
x106.fx = 0;
x107.fx = 0;
x108.fx = 0;
x109.fx = 0;
x160.up = 1;
x161.up = 1;
x162.up = 1;
x163.up = 1;
x164.up = 1;
x165.up = 1;
x166.up = 1;
x167.up = 1;
x168.up = 1;
x169.up = 1;
x170.up = 1;
x171.up = 1;
x172.up = 1;
x173.up = 1;
x174.up = 1;
x175.up = 1;
x176.up = 1;
x177.up = 1;
x178.up = 1;
x179.up = 1;
x180.up = 1;
x181.up = 1;
x182.up = 1;
x183.up = 1;
x184.up = 1;
x185.up = 1;
x186.up = 1;
x187.up = 1;
x188.up = 1;
x189.up = 1;
x190.up = 1;
x191.up = 1;
x192.up = 1;
x193.up = 1;
x194.up = 1;
x195.up = 1;
x196.up = 1;
x197.up = 1;
x198.up = 1;
x199.up = 1;
x200.up = 1;
x201.up = 1;
x202.up = 1;
x203.up = 1;
x204.up = 1;
x205.up = 1;
x206.up = 1;
x207.up = 1;
x208.up = 1;
x209.up = 1;
x210.up = 1;
x211.up = 1;
x212.up = 1;
x213.up = 1;
x214.up = 1;
x215.up = 1;
x216.up = 1;
x217.up = 1;
x218.up = 1;
x219.up = 1;
x220.up = 1;
x221.up = 1;
x222.up = 1;
x223.up = 1;
x224.up = 1;
x225.up = 1;
x226.up = 1;
x227.up = 1;
x228.up = 1;
x229.up = 1;
x230.up = 1;
x231.up = 1;
x232.up = 1;
x233.up = 1;
x234.up = 1;
x235.up = 1;
x236.up = 1;
x237.up = 1;
x238.up = 1;
x239.up = 1;
x240.up = 1;
x241.up = 1;
x242.up = 1;
x243.up = 1;
x244.up = 1;
x245.up = 1;
x246.up = 1;
x247.up = 1;
x248.up = 1;
x249.up = 1;
x250.up = 1;
x251.up = 1;
x252.up = 1;
x253.up = 1;
x254.up = 1;
x255.up = 1;
x256.up = 1;
x257.up = 1;
x258.up = 1;
x259.up = 1;
x260.up = 1;
x261.up = 1;
x262.up = 1;
x263.up = 1;
x264.up = 1;
x265.up = 1;
x266.up = 1;
x267.up = 1;
x268.up = 1;
x269.up = 1;
x270.up = 1;
x271.up = 1;
x272.up = 1;
x273.up = 1;
x274.up = 1;
x275.up = 1;
x276.up = 1;
x277.up = 1;
x278.up = 1;
x279.up = 1;
x280.up = 1;
x281.up = 1;
x282.up = 1;
x283.up = 1;
x284.up = 1;
x285.up = 1;
x286.up = 1;
x287.up = 1;
x288.up = 1;
x289.up = 1;
x290.up = 1;
x291.up = 1;
x292.up = 1;
x293.up = 1;
x294.up = 1;
x295.up = 1;
x296.up = 1;
x297.up = 1;
x298.up = 1;
x299.up = 1;
x300.up = 1;
x301.up = 1;
x302.up = 1;
x303.up = 1;
x304.up = 1;
x305.up = 1;
x306.up = 1;
x307.up = 1;
x308.up = 1;
x309.up = 1;
x310.up = 1;
x311.up = 1;
x312.up = 1;
x313.up = 1;
x314.up = 1;
x315.up = 1;
x316.up = 1;
* set non-default levels
x1.l = 0.714277270296959;
x2.l = 0.213455359357076;
x3.l = -0.000257460042516337;
x4.l = 0.267446625046681;
x5.l = 0.428981457932639;
x6.l = 0.706421402256235;
x7.l = 1.23179277222266;
x8.l = 1.1923022297969;
x9.l = 1;
x10.l = 0.531271066405917;
x11.l = 0.37852116602787;
x12.l = 0.0259822061255019;
x13.l = 0.613866884603052;
x14.l = 0.912812569152467;
x15.l = 0.0233052515549957;
x16.l = 0.0359433346141142;
x17.l = 0.0397474756614438;
x18.l = 0.0172169283352343;
x19.l = 0.00761194936907785;
x20.l = 0.0456959504315114;
x21.l = 0.0141724551070975;
x22.l = 0.307728859298738;
x23.l = 0.0414914804160212;
x24.l = 0.0659507832795914;
x25.l = -0.280822769860641;
x26.l = -0.192302229796904;
x27.l = 0.388881181040466;
x28.l = 0.268505801367806;
x30.l = 14.827424;
x33.l = 2.101049;
x34.l = -0.000327;
x37.l = 1.488157;
x38.l = 7.917504;
x42.l = 6.953332;
x43.l = 1.5645;
x44.l = 2.5185;
x45.l = 2.597798;
x47.l = 9.805414;
x58.l = 3.699706;
x61.l = 0.033;
x67.l = 6;
x68.l = 3.3;
x70.l = 0.0296;
x73.l = 0.2;
x74.l = 0.7336;
x75.l = 0.3574;
x76.l = 0.0744;
x77.l = 0.1652;
x78.l = 0.1395;
x91.l = 1.7123;
x95.l = 0.15;
x96.l = 0.649156;
x97.l = -0.356673;
x98.l = -0.4062;
x100.l = 2.163857;
x102.l = 5.573815;
x110.l = 9.805414;
x111.l = 10.896741;
x112.l = 18.4364105;
x113.l = 21.1551365;
x114.l = 9.78976;
x115.l = 3.673953;
x116.l = 9.6863185;
x117.l = 1.3701;
x118.l = 1.9123;
x119.l = 2.398969;
x120.l = 5.5690645;
x160.l = 0.142857142857143;
x161.l = 0.142857142857143;
x162.l = 0.142857142857143;
x163.l = 0.142857142857143;
x164.l = 0.142857142857143;
x165.l = 0.142857142857143;
x166.l = 0.142857142857143;
x167.l = 0.142857142857143;
x168.l = 0.142857142857143;
x169.l = 0.142857142857143;
x170.l = 0.142857142857143;
x171.l = 0.142857142857143;
x172.l = 0.142857142857143;
x173.l = 0.142857142857143;
x174.l = 0.142857142857143;
x175.l = 0.142857142857143;
x176.l = 0.142857142857143;
x177.l = 0.142857142857143;
x178.l = 0.142857142857143;
x179.l = 0.142857142857143;
x180.l = 0.142857142857143;
x181.l = 0.142857142857143;
x182.l = 0.142857142857143;
x183.l = 0.142857142857143;
x184.l = 0.142857142857143;
x185.l = 0.142857142857143;
x186.l = 0.142857142857143;
x187.l = 0.142857142857143;
x188.l = 0.142857142857143;
x189.l = 0.142857142857143;
x190.l = 0.142857142857143;
x191.l = 0.142857142857143;
x192.l = 0.142857142857143;
x193.l = 0.142857142857143;
x194.l = 0.142857142857143;
x195.l = 0.142857142857143;
x196.l = 0.142857142857143;
x197.l = 0.142857142857143;
x198.l = 0.142857142857143;
x199.l = 0.142857142857143;
x200.l = 0.142857142857143;
x201.l = 0.142857142857143;
x202.l = 0.142857142857143;
x203.l = 0.142857142857143;
x204.l = 0.142857142857143;
x205.l = 0.142857142857143;
x206.l = 0.142857142857143;
x207.l = 0.142857142857143;
x208.l = 0.142857142857143;
x209.l = 0.142857142857143;
x210.l = 0.142857142857143;
x211.l = 0.142857142857143;
x212.l = 0.142857142857143;
x213.l = 0.142857142857143;
x214.l = 0.142857142857143;
x215.l = 0.142857142857143;
x216.l = 0.142857142857143;
x217.l = 0.142857142857143;
x218.l = 0.142857142857143;
x219.l = 0.142857142857143;
x220.l = 0.142857142857143;
x221.l = 0.142857142857143;
x222.l = 0.142857142857143;
x223.l = 0.00617283950617284;
x224.l = 0.197530864197531;
x225.l = 0.592592592592593;
x226.l = 0.197530864197531;
x227.l = 0.00617283950617284;
x228.l = 0.00617283950617284;
x229.l = 0.197530864197531;
x230.l = 0.592592592592593;
x231.l = 0.197530864197531;
x232.l = 0.00617283950617284;
x233.l = 0.0555555555555556;
x234.l = 0.888888888888889;
x235.l = 0.0555555555555556;
x236.l = 0.0555555555555556;
x237.l = 0.888888888888889;
x238.l = 0.0555555555555556;
x239.l = 0.0555555555555556;
x240.l = 0.888888888888889;
x241.l = 0.0555555555555556;
x242.l = 0.0555555555555556;
x243.l = 0.888888888888889;
x244.l = 0.0555555555555556;
x245.l = 0.0555555555555556;
x246.l = 0.888888888888889;
x247.l = 0.0555555555555556;
x248.l = 0.0555555555555556;
x249.l = 0.888888888888889;
x250.l = 0.0555555555555556;
x251.l = 0.0555555555555556;
x252.l = 0.888888888888889;
x253.l = 0.0555555555555556;
x254.l = 0.0555555555555556;
x255.l = 0.888888888888889;
x256.l = 0.0555555555555556;
x257.l = 0.0555555555555556;
x258.l = 0.888888888888889;
x259.l = 0.0555555555555556;
x260.l = 0.0555555555555556;
x261.l = 0.888888888888889;
x262.l = 0.0555555555555556;
x263.l = 0.0555555555555556;
x264.l = 0.888888888888889;
x265.l = 0.0555555555555556;
x266.l = 0.0555555555555556;
x267.l = 0.888888888888889;
x268.l = 0.0555555555555556;
x269.l = 0.0555555555555556;
x270.l = 0.888888888888889;
x271.l = 0.0555555555555556;
x272.l = 0.0555555555555556;
x273.l = 0.888888888888889;
x274.l = 0.0555555555555556;
x275.l = 0.0555555555555556;
x276.l = 0.888888888888889;
x277.l = 0.0555555555555556;
x278.l = 0.0555555555555556;
x279.l = 0.888888888888889;
x280.l = 0.0555555555555556;
x281.l = 0.0555555555555556;
x282.l = 0.888888888888889;
x283.l = 0.0555555555555556;
x284.l = 0.0555555555555556;
x285.l = 0.888888888888889;
x286.l = 0.0555555555555556;
x287.l = 0.0555555555555556;
x288.l = 0.888888888888889;
x289.l = 0.0555555555555556;
x290.l = 0.0555555555555556;
x291.l = 0.888888888888889;
x292.l = 0.0555555555555556;
x293.l = 0.0555555555555556;
x294.l = 0.888888888888889;
x295.l = 0.0555555555555556;
x296.l = 0.0555555555555556;
x297.l = 0.888888888888889;
x298.l = 0.0555555555555556;
x299.l = 0.0555555555555556;
x300.l = 0.888888888888889;
x301.l = 0.0555555555555556;
x302.l = 0.0555555555555556;
x303.l = 0.888888888888889;
x304.l = 0.0555555555555556;
x305.l = 0.0555555555555556;
x306.l = 0.888888888888889;
x307.l = 0.0555555555555556;
x308.l = 0.0555555555555556;
x309.l = 0.888888888888889;
x310.l = 0.0555555555555556;
x311.l = 0.0555555555555556;
x312.l = 0.888888888888889;
x313.l = 0.0555555555555556;
x314.l = 0.0555555555555556;
x315.l = 0.888888888888889;
x316.l = 0.0555555555555556;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

