MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance chain50
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.17451499 (ANTIGONE) -45.23482993 (BARON) -49.77370804 (COUENNE) -32.76724002 (LINDO) -38.83725545 (SCIP) |
Referencesⓘ | Cesari, L, Optimization - Theory and Applications, Springer Verlag, 1983. Dolan, E D and More, J J, Benchmarking Optimization Software with COPS, Tech. Rep. ANL/MCS-246, Mathematics and Computer Science Division, 2000. |
Sourceⓘ | GAMS Model Library model chain, Constrained Optimization Problem Set (COPS) |
Applicationⓘ | Hanging Chain |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 102 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 102 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 102 |
#Nonlinear Nonzeros in Objectiveⓘ | 102 |
#Constraintsⓘ | 51 |
#Linear Constraintsⓘ | 50 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 251 |
#Nonlinear Nonzeros in Jacobianⓘ | 51 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 153 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 51 |
#Blocks in Hessian of Lagrangianⓘ | 51 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-02 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 1.193 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 52 52 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 103 103 0 0 0 0 0 0 * FX 2 * * Nonzero counts * Total const NL DLL * 354 201 153 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52; e1.. -0.01*(sqrt(1 + sqr(x52))*x1 + sqrt(1 + sqr(x53))*x2 + sqrt(1 + sqr(x53))* x2 + sqrt(1 + sqr(x54))*x3 + sqrt(1 + sqr(x54))*x3 + sqrt(1 + sqr(x55))*x4 + sqrt(1 + sqr(x55))*x4 + sqrt(1 + sqr(x56))*x5 + sqrt(1 + sqr(x56))*x5 + sqrt(1 + sqr(x57))*x6 + sqrt(1 + sqr(x57))*x6 + sqrt(1 + sqr(x58))*x7 + sqrt(1 + sqr(x58))*x7 + sqrt(1 + sqr(x59))*x8 + sqrt(1 + sqr(x59))*x8 + sqrt(1 + sqr(x60))*x9 + sqrt(1 + sqr(x60))*x9 + sqrt(1 + sqr(x61))*x10 + sqrt(1 + sqr(x61))*x10 + sqrt(1 + sqr(x62))*x11 + sqrt(1 + sqr(x62))* x11 + sqrt(1 + sqr(x63))*x12 + sqrt(1 + sqr(x63))*x12 + sqrt(1 + sqr(x64)) *x13 + sqrt(1 + sqr(x64))*x13 + sqrt(1 + sqr(x65))*x14 + sqrt(1 + sqr(x65) )*x14 + sqrt(1 + sqr(x66))*x15 + sqrt(1 + sqr(x66))*x15 + sqrt(1 + sqr(x67 ))*x16 + sqrt(1 + sqr(x67))*x16 + sqrt(1 + sqr(x68))*x17 + sqrt(1 + sqr( x68))*x17 + sqrt(1 + sqr(x69))*x18 + sqrt(1 + sqr(x69))*x18 + sqrt(1 + sqr(x70))*x19 + sqrt(1 + sqr(x70))*x19 + sqrt(1 + sqr(x71))*x20 + sqrt(1 + sqr(x71))*x20 + sqrt(1 + sqr(x72))*x21 + sqrt(1 + sqr(x72))*x21 + sqrt( 1 + sqr(x73))*x22 + sqrt(1 + sqr(x73))*x22 + sqrt(1 + sqr(x74))*x23 + sqrt(1 + sqr(x74))*x23 + sqrt(1 + sqr(x75))*x24 + sqrt(1 + sqr(x75))*x24 + sqrt(1 + sqr(x76))*x25 + sqrt(1 + sqr(x76))*x25 + sqrt(1 + sqr(x77))* x26 + sqrt(1 + sqr(x77))*x26 + sqrt(1 + sqr(x78))*x27 + sqrt(1 + sqr(x78)) *x27 + sqrt(1 + sqr(x79))*x28 + sqrt(1 + sqr(x79))*x28 + sqrt(1 + sqr(x80) )*x29 + sqrt(1 + sqr(x80))*x29 + sqrt(1 + sqr(x81))*x30 + sqrt(1 + sqr(x81 ))*x30 + sqrt(1 + sqr(x82))*x31 + sqrt(1 + sqr(x82))*x31 + sqrt(1 + sqr( x83))*x32 + sqrt(1 + sqr(x83))*x32 + sqrt(1 + sqr(x84))*x33 + sqrt(1 + sqr(x84))*x33 + sqrt(1 + sqr(x85))*x34 + sqrt(1 + sqr(x85))*x34 + sqrt(1 + sqr(x86))*x35 + sqrt(1 + sqr(x86))*x35 + sqrt(1 + sqr(x87))*x36 + sqrt( 1 + sqr(x87))*x36 + sqrt(1 + sqr(x88))*x37 + sqrt(1 + sqr(x88))*x37 + sqrt(1 + sqr(x89))*x38 + sqrt(1 + sqr(x89))*x38 + sqrt(1 + sqr(x90))*x39 + sqrt(1 + sqr(x90))*x39 + sqrt(1 + sqr(x91))*x40 + sqrt(1 + sqr(x91))* x40 + sqrt(1 + sqr(x92))*x41 + sqrt(1 + sqr(x92))*x41 + sqrt(1 + sqr(x93)) *x42 + sqrt(1 + sqr(x93))*x42 + sqrt(1 + sqr(x94))*x43 + sqrt(1 + sqr(x94) )*x43 + sqrt(1 + sqr(x95))*x44 + sqrt(1 + sqr(x95))*x44 + sqrt(1 + sqr(x96 ))*x45 + sqrt(1 + sqr(x96))*x45 + sqrt(1 + sqr(x97))*x46 + sqrt(1 + sqr( x97))*x46 + sqrt(1 + sqr(x98))*x47 + sqrt(1 + sqr(x98))*x47 + sqrt(1 + sqr(x99))*x48 + sqrt(1 + sqr(x99))*x48 + sqrt(1 + sqr(x100))*x49 + sqrt(1 + sqr(x100))*x49 + sqrt(1 + sqr(x101))*x50 + sqrt(1 + sqr(x101))*x50 + sqrt(1 + sqr(x102))*x51) + objvar =E= 0; e2.. - x1 + x2 - 0.01*x52 - 0.01*x53 =E= 0; e3.. - x2 + x3 - 0.01*x53 - 0.01*x54 =E= 0; e4.. - x3 + x4 - 0.01*x54 - 0.01*x55 =E= 0; e5.. - x4 + x5 - 0.01*x55 - 0.01*x56 =E= 0; e6.. - x5 + x6 - 0.01*x56 - 0.01*x57 =E= 0; e7.. - x6 + x7 - 0.01*x57 - 0.01*x58 =E= 0; e8.. - x7 + x8 - 0.01*x58 - 0.01*x59 =E= 0; e9.. - x8 + x9 - 0.01*x59 - 0.01*x60 =E= 0; e10.. - x9 + x10 - 0.01*x60 - 0.01*x61 =E= 0; e11.. - x10 + x11 - 0.01*x61 - 0.01*x62 =E= 0; e12.. - x11 + x12 - 0.01*x62 - 0.01*x63 =E= 0; e13.. - x12 + x13 - 0.01*x63 - 0.01*x64 =E= 0; e14.. - x13 + x14 - 0.01*x64 - 0.01*x65 =E= 0; e15.. - x14 + x15 - 0.01*x65 - 0.01*x66 =E= 0; e16.. - x15 + x16 - 0.01*x66 - 0.01*x67 =E= 0; e17.. - x16 + x17 - 0.01*x67 - 0.01*x68 =E= 0; e18.. - x17 + x18 - 0.01*x68 - 0.01*x69 =E= 0; e19.. - x18 + x19 - 0.01*x69 - 0.01*x70 =E= 0; e20.. - x19 + x20 - 0.01*x70 - 0.01*x71 =E= 0; e21.. - x20 + x21 - 0.01*x71 - 0.01*x72 =E= 0; e22.. - x21 + x22 - 0.01*x72 - 0.01*x73 =E= 0; e23.. - x22 + x23 - 0.01*x73 - 0.01*x74 =E= 0; e24.. - x23 + x24 - 0.01*x74 - 0.01*x75 =E= 0; e25.. - x24 + x25 - 0.01*x75 - 0.01*x76 =E= 0; e26.. - x25 + x26 - 0.01*x76 - 0.01*x77 =E= 0; e27.. - x26 + x27 - 0.01*x77 - 0.01*x78 =E= 0; e28.. - x27 + x28 - 0.01*x78 - 0.01*x79 =E= 0; e29.. - x28 + x29 - 0.01*x79 - 0.01*x80 =E= 0; e30.. - x29 + x30 - 0.01*x80 - 0.01*x81 =E= 0; e31.. - x30 + x31 - 0.01*x81 - 0.01*x82 =E= 0; e32.. - x31 + x32 - 0.01*x82 - 0.01*x83 =E= 0; e33.. - x32 + x33 - 0.01*x83 - 0.01*x84 =E= 0; e34.. - x33 + x34 - 0.01*x84 - 0.01*x85 =E= 0; e35.. - x34 + x35 - 0.01*x85 - 0.01*x86 =E= 0; e36.. - x35 + x36 - 0.01*x86 - 0.01*x87 =E= 0; e37.. - x36 + x37 - 0.01*x87 - 0.01*x88 =E= 0; e38.. - x37 + x38 - 0.01*x88 - 0.01*x89 =E= 0; e39.. - x38 + x39 - 0.01*x89 - 0.01*x90 =E= 0; e40.. - x39 + x40 - 0.01*x90 - 0.01*x91 =E= 0; e41.. - x40 + x41 - 0.01*x91 - 0.01*x92 =E= 0; e42.. - x41 + x42 - 0.01*x92 - 0.01*x93 =E= 0; e43.. - x42 + x43 - 0.01*x93 - 0.01*x94 =E= 0; e44.. - x43 + x44 - 0.01*x94 - 0.01*x95 =E= 0; e45.. - x44 + x45 - 0.01*x95 - 0.01*x96 =E= 0; e46.. - x45 + x46 - 0.01*x96 - 0.01*x97 =E= 0; e47.. - x46 + x47 - 0.01*x97 - 0.01*x98 =E= 0; e48.. - x47 + x48 - 0.01*x98 - 0.01*x99 =E= 0; e49.. - x48 + x49 - 0.01*x99 - 0.01*x100 =E= 0; e50.. - x49 + x50 - 0.01*x100 - 0.01*x101 =E= 0; e51.. - x50 + x51 - 0.01*x101 - 0.01*x102 =E= 0; e52.. 0.01*(sqrt(1 + sqr(x52)) + sqrt(1 + sqr(x53)) + sqrt(1 + sqr(x53)) + sqrt(1 + sqr(x54)) + sqrt(1 + sqr(x54)) + sqrt(1 + sqr(x55)) + sqrt(1 + sqr(x55)) + sqrt(1 + sqr(x56)) + sqrt(1 + sqr(x56)) + sqrt(1 + sqr(x57)) + sqrt(1 + sqr(x57)) + sqrt(1 + sqr(x58)) + sqrt(1 + sqr(x58)) + sqrt(1 + sqr(x59)) + sqrt(1 + sqr(x59)) + sqrt(1 + sqr(x60)) + sqrt(1 + sqr(x60 )) + sqrt(1 + sqr(x61)) + sqrt(1 + sqr(x61)) + sqrt(1 + sqr(x62)) + sqrt( 1 + sqr(x62)) + sqrt(1 + sqr(x63)) + sqrt(1 + sqr(x63)) + sqrt(1 + sqr( x64)) + sqrt(1 + sqr(x64)) + sqrt(1 + sqr(x65)) + sqrt(1 + sqr(x65)) + sqrt(1 + sqr(x66)) + sqrt(1 + sqr(x66)) + sqrt(1 + sqr(x67)) + sqrt(1 + sqr(x67)) + sqrt(1 + sqr(x68)) + sqrt(1 + sqr(x68)) + sqrt(1 + sqr(x69)) + sqrt(1 + sqr(x69)) + sqrt(1 + sqr(x70)) + sqrt(1 + sqr(x70)) + sqrt(1 + sqr(x71)) + sqrt(1 + sqr(x71)) + sqrt(1 + sqr(x72)) + sqrt(1 + sqr(x72 )) + sqrt(1 + sqr(x73)) + sqrt(1 + sqr(x73)) + sqrt(1 + sqr(x74)) + sqrt( 1 + sqr(x74)) + sqrt(1 + sqr(x75)) + sqrt(1 + sqr(x75)) + sqrt(1 + sqr( x76)) + sqrt(1 + sqr(x76)) + sqrt(1 + sqr(x77)) + sqrt(1 + sqr(x77)) + sqrt(1 + sqr(x78)) + sqrt(1 + sqr(x78)) + sqrt(1 + sqr(x79)) + sqrt(1 + sqr(x79)) + sqrt(1 + sqr(x80)) + sqrt(1 + sqr(x80)) + sqrt(1 + sqr(x81)) + sqrt(1 + sqr(x81)) + sqrt(1 + sqr(x82)) + sqrt(1 + sqr(x82)) + sqrt(1 + sqr(x83)) + sqrt(1 + sqr(x83)) + sqrt(1 + sqr(x84)) + sqrt(1 + sqr(x84 )) + sqrt(1 + sqr(x85)) + sqrt(1 + sqr(x85)) + sqrt(1 + sqr(x86)) + sqrt( 1 + sqr(x86)) + sqrt(1 + sqr(x87)) + sqrt(1 + sqr(x87)) + sqrt(1 + sqr( x88)) + sqrt(1 + sqr(x88)) + sqrt(1 + sqr(x89)) + sqrt(1 + sqr(x89)) + sqrt(1 + sqr(x90)) + sqrt(1 + sqr(x90)) + sqrt(1 + sqr(x91)) + sqrt(1 + sqr(x91)) + sqrt(1 + sqr(x92)) + sqrt(1 + sqr(x92)) + sqrt(1 + sqr(x93)) + sqrt(1 + sqr(x93)) + sqrt(1 + sqr(x94)) + sqrt(1 + sqr(x94)) + sqrt(1 + sqr(x95)) + sqrt(1 + sqr(x95)) + sqrt(1 + sqr(x96)) + sqrt(1 + sqr(x96 )) + sqrt(1 + sqr(x97)) + sqrt(1 + sqr(x97)) + sqrt(1 + sqr(x98)) + sqrt( 1 + sqr(x98)) + sqrt(1 + sqr(x99)) + sqrt(1 + sqr(x99)) + sqrt(1 + sqr( x100)) + sqrt(1 + sqr(x100)) + sqrt(1 + sqr(x101)) + sqrt(1 + sqr(x101)) + sqrt(1 + sqr(x102))) =E= 4; * set non-default bounds x1.fx = 1; x51.fx = 3; * set non-default levels x2.l = 0.9616; x3.l = 0.9264; x4.l = 0.8944; x5.l = 0.8656; x6.l = 0.84; x7.l = 0.8176; x8.l = 0.7984; x9.l = 0.7824; x10.l = 0.7696; x11.l = 0.76; x12.l = 0.7536; x13.l = 0.7504; x14.l = 0.7504; x15.l = 0.7536; x16.l = 0.76; x17.l = 0.7696; x18.l = 0.7824; x19.l = 0.7984; x20.l = 0.8176; x21.l = 0.84; x22.l = 0.8656; x23.l = 0.8944; x24.l = 0.9264; x25.l = 0.9616; x26.l = 1; x27.l = 1.0416; x28.l = 1.0864; x29.l = 1.1344; x30.l = 1.1856; x31.l = 1.24; x32.l = 1.2976; x33.l = 1.3584; x34.l = 1.4224; x35.l = 1.4896; x36.l = 1.56; x37.l = 1.6336; x38.l = 1.7104; x39.l = 1.7904; x40.l = 1.8736; x41.l = 1.96; x42.l = 2.0496; x43.l = 2.1424; x44.l = 2.2384; x45.l = 2.3376; x46.l = 2.44; x47.l = 2.5456; x48.l = 2.6544; x49.l = 2.7664; x50.l = 2.8816; x52.l = -2; x53.l = -1.84; x54.l = -1.68; x55.l = -1.52; x56.l = -1.36; x57.l = -1.2; x58.l = -1.04; x59.l = -0.88; x60.l = -0.72; x61.l = -0.56; x62.l = -0.4; x63.l = -0.24; x64.l = -0.0800000000000001; x65.l = 0.0800000000000001; x66.l = 0.24; x67.l = 0.4; x68.l = 0.56; x69.l = 0.72; x70.l = 0.88; x71.l = 1.04; x72.l = 1.2; x73.l = 1.36; x74.l = 1.52; x75.l = 1.68; x76.l = 1.84; x77.l = 2; x78.l = 2.16; x79.l = 2.32; x80.l = 2.48; x81.l = 2.64; x82.l = 2.8; x83.l = 2.96; x84.l = 3.12; x85.l = 3.28; x86.l = 3.44; x87.l = 3.6; x88.l = 3.76; x89.l = 3.92; x90.l = 4.08; x91.l = 4.24; x92.l = 4.4; x93.l = 4.56; x94.l = 4.72; x95.l = 4.88; x96.l = 5.04; x97.l = 5.2; x98.l = 5.36; x99.l = 5.52; x100.l = 5.68; x101.l = 5.84; x102.l = 6; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f