MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance chem

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-47.70651483 p1 ( gdx sol )
(infeas: 4e-16)
Other points (infeas > 1e-08)  
Dual Bounds
-47.70651533 (ANTIGONE)
-47.70651488 (BARON)
-47.70655845 (COUENNE)
-47.70654626 (LINDO)
-47.70652115 (SCIP)
References Bracken, Jerome and McCormick, Garth P, Chapter 5. In Bracken, Jerome and McCormick, Garth P, Selected Applications of Nonlinear Programming, John Wiley and Sons, New York, 1968, 48-49.
Source GAMS Model Library model chem
Application Chemical Equilibrium
Added to library 31 Jul 2001
Problem type NLP
#Variables 11
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 11
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature nonconcave
#Nonzeros in Objective 11
#Nonlinear Nonzeros in Objective 11
#Constraints 4
#Linear Constraints 4
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div log mul
Constraints curvature linear
#Nonzeros in Jacobian 25
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 31
#Nonzeros in Diagonal of Hessian of Lagrangian 11
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 11
Maximal blocksize in Hessian of Lagrangian 11
Average blocksize in Hessian of Lagrangian 11.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 3.4021e+01
Infeasibility of initial point 1.993
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          5        5        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         12       12        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         37       26       11        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,objvar;

Equations  e1,e2,e3,e4,e5;


e1..    x1 + 2*x2 + 2*x3 + x6 + x10 =E= 2;

e2..    x4 + 2*x5 + x6 + x7 =E= 1;

e3..    x3 + x7 + x8 + 2*x9 + x10 =E= 1;

e4.. -((-6.05576803624071 + log(x1/x11))*x1 + (-17.1307680362407 + log(x2/x11))
     *x2 + (-34.0207680362407 + log(x3/x11))*x3 + (-5.88076803624071 + log(x4/
     x11))*x4 + (-24.6877680362407 + log(x5/x11))*x5 + (-14.9527680362407 + 
     log(x6/x11))*x6 + (-24.0667680362407 + log(x7/x11))*x7 + (-
     10.6747680362407 + log(x8/x11))*x8 + (-26.6287680362407 + log(x9/x11))*x9
      + (-22.1447680362407 + log(x10/x11))*x10) + objvar =E= 0;

e5..  - x1 - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 + x11 =E= 0;

* set non-default bounds
x1.lo = 0.001;
x2.lo = 0.001;
x3.lo = 0.001;
x4.lo = 0.001;
x5.lo = 0.001;
x6.lo = 0.001;
x7.lo = 0.001;
x8.lo = 0.001;
x9.lo = 0.001;
x10.lo = 0.001;
x11.lo = 0.01;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0