MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance clay0203h
Non overlapping rectangular units must be placed within the confines of certain designated areas such that the cost of connecting these units is minimized.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 41573.30176000 (ALPHAECP) 9357.62980100 (ANTIGONE) 41573.30176000 (BARON) 41573.30176000 (BONMIN) 41573.30176000 (COUENNE) 41573.30176000 (LINDO) 41573.30174000 (SCIP) 40183.68648000 (SHOT) |
Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
Sourceⓘ | CLay0203H.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Layout |
Added to libraryⓘ | 28 Sep 2013 |
Removed from libraryⓘ | 16 Feb 2022 |
Removed becauseⓘ | Superseded by clay0203hfsg |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 90 |
#Binary Variablesⓘ | 18 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 18 |
#Nonlinear Binary Variablesⓘ | 6 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 132 |
#Linear Constraintsⓘ | 108 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 24 |
Operands in Gen. Nonlin. Functionsⓘ | div mul sqr |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 360 |
#Nonlinear Nonzeros in Jacobianⓘ | 72 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 42 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 18 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-06 |
Maximal coefficientⓘ | 6.8890e+03 |
Infeasibility of initial pointⓘ | 12.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 133 25 12 96 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 91 73 18 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 367 295 72 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,x85,x86,x87 ,x88,x89,x90,objvar; Positive Variables x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21 ,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38 ,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55 ,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x85,x86,x87,x88,x89,x90; Binary Variables b67,b68,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81 ,b82,b83,b84; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133; e1.. - 300*x85 - 240*x86 - 100*x87 - 300*x88 - 240*x89 - 100*x90 + objvar =E= 0; e2.. - x1 + x2 + x85 =G= 0; e3.. - x1 + x3 + x86 =G= 0; e4.. - x2 + x3 + x87 =G= 0; e5.. x1 - x2 + x85 =G= 0; e6.. x1 - x3 + x86 =G= 0; e7.. x2 - x3 + x87 =G= 0; e8.. - x4 + x5 + x88 =G= 0; e9.. - x4 + x6 + x89 =G= 0; e10.. - x5 + x6 + x90 =G= 0; e11.. x4 - x5 + x88 =G= 0; e12.. x4 - x6 + x89 =G= 0; e13.. x5 - x6 + x90 =G= 0; e14.. x1 - x7 - x9 - x11 - x13 =E= 0; e15.. x1 - x8 - x10 - x12 - x14 =E= 0; e16.. x2 - x15 - x17 - x19 - x21 =E= 0; e17.. x2 - x16 - x18 - x20 - x22 =E= 0; e18.. x3 - x23 - x25 - x27 - x29 =E= 0; e19.. x3 - x24 - x26 - x28 - x30 =E= 0; e20.. x4 - x31 - x33 - x35 - x37 =E= 0; e21.. x4 - x32 - x34 - x36 - x38 =E= 0; e22.. x5 - x39 - x41 - x43 - x45 =E= 0; e23.. x5 - x40 - x42 - x44 - x46 =E= 0; e24.. x6 - x47 - x49 - x51 - x53 =E= 0; e25.. x6 - x48 - x50 - x52 - x54 =E= 0; e26.. x7 - 52.5*b67 =L= 0; e27.. x8 - 52.5*b68 =L= 0; e28.. x9 - 52.5*b70 =L= 0; e29.. x10 - 52.5*b71 =L= 0; e30.. x11 - 52.5*b73 =L= 0; e31.. x12 - 52.5*b74 =L= 0; e32.. x13 - 52.5*b76 =L= 0; e33.. x14 - 52.5*b77 =L= 0; e34.. x15 - 52.5*b67 =L= 0; e35.. x16 - 51.5*b69 =L= 0; e36.. x17 - 52.5*b70 =L= 0; e37.. x18 - 51.5*b72 =L= 0; e38.. x19 - 52.5*b73 =L= 0; e39.. x20 - 51.5*b75 =L= 0; e40.. x21 - 52.5*b76 =L= 0; e41.. x22 - 51.5*b78 =L= 0; e42.. x23 - 52.5*b68 =L= 0; e43.. x24 - 51.5*b69 =L= 0; e44.. x25 - 52.5*b71 =L= 0; e45.. x26 - 51.5*b72 =L= 0; e46.. x27 - 52.5*b74 =L= 0; e47.. x28 - 51.5*b75 =L= 0; e48.. x29 - 52.5*b77 =L= 0; e49.. x30 - 51.5*b78 =L= 0; e50.. x31 - 82*b67 =L= 0; e51.. x32 - 82*b68 =L= 0; e52.. x33 - 82*b70 =L= 0; e53.. x34 - 82*b71 =L= 0; e54.. x35 - 82*b73 =L= 0; e55.. x36 - 82*b74 =L= 0; e56.. x37 - 82*b76 =L= 0; e57.. x38 - 82*b77 =L= 0; e58.. x39 - 82*b67 =L= 0; e59.. x40 - 82.5*b69 =L= 0; e60.. x41 - 82*b70 =L= 0; e61.. x42 - 82.5*b72 =L= 0; e62.. x43 - 82*b73 =L= 0; e63.. x44 - 82.5*b75 =L= 0; e64.. x45 - 82*b76 =L= 0; e65.. x46 - 82.5*b78 =L= 0; e66.. x47 - 82*b68 =L= 0; e67.. x48 - 82.5*b69 =L= 0; e68.. x49 - 82*b71 =L= 0; e69.. x50 - 82.5*b72 =L= 0; e70.. x51 - 82*b74 =L= 0; e71.. x52 - 82.5*b75 =L= 0; e72.. x53 - 82*b77 =L= 0; e73.. x54 - 82.5*b78 =L= 0; e74.. x7 - x15 + 6*b67 =L= 0; e75.. x8 - x23 + 4*b68 =L= 0; e76.. x16 - x24 + 5*b69 =L= 0; e77.. - x9 + x17 + 6*b70 =L= 0; e78.. - x10 + x25 + 4*b71 =L= 0; e79.. - x18 + x26 + 5*b72 =L= 0; e80.. x35 - x43 + 5.5*b73 =L= 0; e81.. x36 - x51 + 4.5*b74 =L= 0; e82.. x44 - x52 + 4*b75 =L= 0; e83.. - x37 + x45 + 5.5*b76 =L= 0; e84.. - x38 + x53 + 4.5*b77 =L= 0; e85.. - x46 + x54 + 4*b78 =L= 0; e86.. b67 + b70 + b73 + b76 =E= 1; e87.. b68 + b71 + b74 + b77 =E= 1; e88.. b69 + b72 + b75 + b78 =E= 1; e89.. x1 - x55 - x58 =E= 0; e90.. x2 - x56 - x59 =E= 0; e91.. x3 - x57 - x60 =E= 0; e92.. x4 - x61 - x64 =E= 0; e93.. x5 - x62 - x65 =E= 0; e94.. x6 - x63 - x66 =E= 0; e95.. x55 - 18.5*b79 =L= 0; e96.. x56 - 17.5*b80 =L= 0; e97.. x57 - 19.5*b81 =L= 0; e98.. x58 - 52.5*b82 =L= 0; e99.. x59 - 51.5*b83 =L= 0; e100.. x60 - 53.5*b84 =L= 0; e101.. x61 - 13*b79 =L= 0; e102.. x62 - 13.5*b80 =L= 0; e103.. x63 - 14.5*b81 =L= 0; e104.. x64 - 82*b82 =L= 0; e105.. x65 - 82.5*b83 =L= 0; e106.. x66 - 83.5*b84 =L= 0; e107.. (sqr(x55/(1e-6 + b79)) - 35*x55/(1e-6 + b79) + 306.25*b79 + sqr(x61/( 1e-6 + b79)) - 14*x61/(1e-6 + b79) + 49*b79 - 36*b79)*(1e-6 + b79) =L= 0 ; e108.. (sqr(x56/(1e-6 + b80)) - 37*x56/(1e-6 + b80) + 342.25*b80 + sqr(x62/( 1e-6 + b80)) - 15*x62/(1e-6 + b80) + 56.25*b80 - 36*b80)*(1e-6 + b80) =L= 0; e109.. (sqr(x57/(1e-6 + b81)) - 33*x57/(1e-6 + b81) + 272.25*b81 + sqr(x63/( 1e-6 + b81)) - 17*x63/(1e-6 + b81) + 72.25*b81 - 36*b81)*(1e-6 + b81) =L= 0; e110.. (sqr(x58/(1e-6 + b82)) - 105*x58/(1e-6 + b82) + 2756.25*b82 + sqr(x64/( 1e-6 + b82)) - 154*x64/(1e-6 + b82) + 5929*b82 - 25*b82)*(1e-6 + b82) =L= 0; e111.. (sqr(x59/(1e-6 + b83)) - 107*x59/(1e-6 + b83) + 2862.25*b83 + sqr(x65/( 1e-6 + b83)) - 155*x65/(1e-6 + b83) + 6006.25*b83 - 25*b83)*(1e-6 + b83) =L= 0; e112.. (sqr(x60/(1e-6 + b84)) - 103*x60/(1e-6 + b84) + 2652.25*b84 + sqr(x66/( 1e-6 + b84)) - 157*x66/(1e-6 + b84) + 6162.25*b84 - 25*b84)*(1e-6 + b84) =L= 0; e113.. (sqr(x55/(1e-6 + b79)) - 35*x55/(1e-6 + b79) + 306.25*b79 + sqr(x61/( 1e-6 + b79)) - 26*x61/(1e-6 + b79) + 169*b79 - 36*b79)*(1e-6 + b79) =L= 0; e114.. (sqr(x56/(1e-6 + b80)) - 37*x56/(1e-6 + b80) + 342.25*b80 + sqr(x62/( 1e-6 + b80)) - 25*x62/(1e-6 + b80) + 156.25*b80 - 36*b80)*(1e-6 + b80) =L= 0; e115.. (sqr(x57/(1e-6 + b81)) - 33*x57/(1e-6 + b81) + 272.25*b81 + sqr(x63/( 1e-6 + b81)) - 23*x63/(1e-6 + b81) + 132.25*b81 - 36*b81)*(1e-6 + b81) =L= 0; e116.. (sqr(x58/(1e-6 + b82)) - 105*x58/(1e-6 + b82) + 2756.25*b82 + sqr(x64/( 1e-6 + b82)) - 166*x64/(1e-6 + b82) + 6889*b82 - 25*b82)*(1e-6 + b82) =L= 0; e117.. (sqr(x59/(1e-6 + b83)) - 107*x59/(1e-6 + b83) + 2862.25*b83 + sqr(x65/( 1e-6 + b83)) - 165*x65/(1e-6 + b83) + 6806.25*b83 - 25*b83)*(1e-6 + b83) =L= 0; e118.. (sqr(x60/(1e-6 + b84)) - 103*x60/(1e-6 + b84) + 2652.25*b84 + sqr(x66/( 1e-6 + b84)) - 163*x66/(1e-6 + b84) + 6642.25*b84 - 25*b84)*(1e-6 + b84) =L= 0; e119.. (sqr(x55/(1e-6 + b79)) - 25*x55/(1e-6 + b79) + 156.25*b79 + sqr(x61/( 1e-6 + b79)) - 14*x61/(1e-6 + b79) + 49*b79 - 36*b79)*(1e-6 + b79) =L= 0 ; e120.. (sqr(x56/(1e-6 + b80)) - 23*x56/(1e-6 + b80) + 132.25*b80 + sqr(x62/( 1e-6 + b80)) - 15*x62/(1e-6 + b80) + 56.25*b80 - 36*b80)*(1e-6 + b80) =L= 0; e121.. (sqr(x57/(1e-6 + b81)) - 27*x57/(1e-6 + b81) + 182.25*b81 + sqr(x63/( 1e-6 + b81)) - 17*x63/(1e-6 + b81) + 72.25*b81 - 36*b81)*(1e-6 + b81) =L= 0; e122.. (sqr(x58/(1e-6 + b82)) - 95*x58/(1e-6 + b82) + 2256.25*b82 + sqr(x64/( 1e-6 + b82)) - 154*x64/(1e-6 + b82) + 5929*b82 - 25*b82)*(1e-6 + b82) =L= 0; e123.. (sqr(x59/(1e-6 + b83)) - 93*x59/(1e-6 + b83) + 2162.25*b83 + sqr(x65/( 1e-6 + b83)) - 155*x65/(1e-6 + b83) + 6006.25*b83 - 25*b83)*(1e-6 + b83) =L= 0; e124.. (sqr(x60/(1e-6 + b84)) - 97*x60/(1e-6 + b84) + 2352.25*b84 + sqr(x66/( 1e-6 + b84)) - 157*x66/(1e-6 + b84) + 6162.25*b84 - 25*b84)*(1e-6 + b84) =L= 0; e125.. (sqr(x55/(1e-6 + b79)) - 25*x55/(1e-6 + b79) + 156.25*b79 + sqr(x61/( 1e-6 + b79)) - 26*x61/(1e-6 + b79) + 169*b79 - 36*b79)*(1e-6 + b79) =L= 0; e126.. (sqr(x56/(1e-6 + b80)) - 23*x56/(1e-6 + b80) + 132.25*b80 + sqr(x62/( 1e-6 + b80)) - 25*x62/(1e-6 + b80) + 156.25*b80 - 36*b80)*(1e-6 + b80) =L= 0; e127.. (sqr(x57/(1e-6 + b81)) - 27*x57/(1e-6 + b81) + 182.25*b81 + sqr(x63/( 1e-6 + b81)) - 23*x63/(1e-6 + b81) + 132.25*b81 - 36*b81)*(1e-6 + b81) =L= 0; e128.. (sqr(x58/(1e-6 + b82)) - 95*x58/(1e-6 + b82) + 2256.25*b82 + sqr(x64/( 1e-6 + b82)) - 166*x64/(1e-6 + b82) + 6889*b82 - 25*b82)*(1e-6 + b82) =L= 0; e129.. (sqr(x59/(1e-6 + b83)) - 93*x59/(1e-6 + b83) + 2162.25*b83 + sqr(x65/( 1e-6 + b83)) - 165*x65/(1e-6 + b83) + 6806.25*b83 - 25*b83)*(1e-6 + b83) =L= 0; e130.. (sqr(x60/(1e-6 + b84)) - 97*x60/(1e-6 + b84) + 2352.25*b84 + sqr(x66/( 1e-6 + b84)) - 163*x66/(1e-6 + b84) + 6642.25*b84 - 25*b84)*(1e-6 + b84) =L= 0; e131.. b79 + b82 =E= 1; e132.. b80 + b83 =E= 1; e133.. b81 + b84 =E= 1; * set non-default bounds x1.lo = 11.5; x1.up = 52.5; x2.lo = 12.5; x2.up = 51.5; x3.lo = 10.5; x3.up = 53.5; x4.lo = 7; x4.up = 82; x5.lo = 6.5; x5.up = 82.5; x6.lo = 5.5; x6.up = 83.5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f