MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Removed Instance clay0303h

Non overlapping rectangular units must be placed within the confines of certain designated areas such that the cost of connecting these units is minimized.
Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
26669.13374000 p1 ( gdx sol )
(infeas: 4e-15)
Other points (infeas > 1e-08)  
Dual Bounds
26669.13374000 (ALPHAECP)
19413.15701000 (ANTIGONE)
26669.13370000 (BARON)
26669.13374000 (BONMIN)
26669.13363000 (COUENNE)
26669.13374000 (LINDO)
26669.13370000 (SCIP)
2400.00000000 (SHOT)
References Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006.
Source CLay0303H.gms from CMU-IBM MINLP solver project page
Application Layout
Added to library 28 Sep 2013
Removed from library 16 Feb 2022
Removed because Superseded by clay0303hfsg
Problem type MBNLP
#Variables 99
#Binary Variables 21
#Integer Variables 0
#Nonlinear Variables 27
#Nonlinear Binary Variables 9
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 6
#Nonlinear Nonzeros in Objective 0
#Constraints 150
#Linear Constraints 114
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 36
Operands in Gen. Nonlin. Functions div mul sqr
Constraints curvature convex
#Nonzeros in Jacobian 417
#Nonlinear Nonzeros in Jacobian 108
#Nonzeros in (Upper-Left) Hessian of Lagrangian 63
#Nonzeros in Diagonal of Hessian of Lagrangian 27
#Blocks in Hessian of Lagrangian 9
Minimal blocksize in Hessian of Lagrangian 3
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 3.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-06
Maximal coefficient 6.8890e+03
Infeasibility of initial point 12.5
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        151       25       12      114        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        100       79       21        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        424      316      108        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,x94,x95,x96,x97,x98,x99,objvar;

Positive Variables  x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21
          ,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38
          ,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55
          ,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72
          ,x94,x95,x96,x97,x98,x99;

Binary Variables  b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151;


e1..  - 300*x94 - 240*x95 - 100*x96 - 300*x97 - 240*x98 - 100*x99 + objvar
      =E= 0;

e2..  - x1 + x2 + x94 =G= 0;

e3..  - x1 + x3 + x95 =G= 0;

e4..  - x2 + x3 + x96 =G= 0;

e5..    x1 - x2 + x94 =G= 0;

e6..    x1 - x3 + x95 =G= 0;

e7..    x2 - x3 + x96 =G= 0;

e8..  - x4 + x5 + x97 =G= 0;

e9..  - x4 + x6 + x98 =G= 0;

e10..  - x5 + x6 + x99 =G= 0;

e11..    x4 - x5 + x97 =G= 0;

e12..    x4 - x6 + x98 =G= 0;

e13..    x5 - x6 + x99 =G= 0;

e14..    x1 - x7 - x9 - x11 - x13 =E= 0;

e15..    x1 - x8 - x10 - x12 - x14 =E= 0;

e16..    x2 - x15 - x17 - x19 - x21 =E= 0;

e17..    x2 - x16 - x18 - x20 - x22 =E= 0;

e18..    x3 - x23 - x25 - x27 - x29 =E= 0;

e19..    x3 - x24 - x26 - x28 - x30 =E= 0;

e20..    x4 - x31 - x33 - x35 - x37 =E= 0;

e21..    x4 - x32 - x34 - x36 - x38 =E= 0;

e22..    x5 - x39 - x41 - x43 - x45 =E= 0;

e23..    x5 - x40 - x42 - x44 - x46 =E= 0;

e24..    x6 - x47 - x49 - x51 - x53 =E= 0;

e25..    x6 - x48 - x50 - x52 - x54 =E= 0;

e26..    x7 - 52.5*b73 =L= 0;

e27..    x8 - 52.5*b74 =L= 0;

e28..    x9 - 52.5*b76 =L= 0;

e29..    x10 - 52.5*b77 =L= 0;

e30..    x11 - 52.5*b79 =L= 0;

e31..    x12 - 52.5*b80 =L= 0;

e32..    x13 - 52.5*b82 =L= 0;

e33..    x14 - 52.5*b83 =L= 0;

e34..    x15 - 52.5*b73 =L= 0;

e35..    x16 - 51.5*b75 =L= 0;

e36..    x17 - 52.5*b76 =L= 0;

e37..    x18 - 51.5*b78 =L= 0;

e38..    x19 - 52.5*b79 =L= 0;

e39..    x20 - 51.5*b81 =L= 0;

e40..    x21 - 52.5*b82 =L= 0;

e41..    x22 - 51.5*b84 =L= 0;

e42..    x23 - 52.5*b74 =L= 0;

e43..    x24 - 51.5*b75 =L= 0;

e44..    x25 - 52.5*b77 =L= 0;

e45..    x26 - 51.5*b78 =L= 0;

e46..    x27 - 52.5*b80 =L= 0;

e47..    x28 - 51.5*b81 =L= 0;

e48..    x29 - 52.5*b83 =L= 0;

e49..    x30 - 51.5*b84 =L= 0;

e50..    x31 - 82*b73 =L= 0;

e51..    x32 - 82*b74 =L= 0;

e52..    x33 - 82*b76 =L= 0;

e53..    x34 - 82*b77 =L= 0;

e54..    x35 - 82*b79 =L= 0;

e55..    x36 - 82*b80 =L= 0;

e56..    x37 - 82*b82 =L= 0;

e57..    x38 - 82*b83 =L= 0;

e58..    x39 - 82*b73 =L= 0;

e59..    x40 - 82.5*b75 =L= 0;

e60..    x41 - 82*b76 =L= 0;

e61..    x42 - 82.5*b78 =L= 0;

e62..    x43 - 82*b79 =L= 0;

e63..    x44 - 82.5*b81 =L= 0;

e64..    x45 - 82*b82 =L= 0;

e65..    x46 - 82.5*b84 =L= 0;

e66..    x47 - 82*b74 =L= 0;

e67..    x48 - 82.5*b75 =L= 0;

e68..    x49 - 82*b77 =L= 0;

e69..    x50 - 82.5*b78 =L= 0;

e70..    x51 - 82*b80 =L= 0;

e71..    x52 - 82.5*b81 =L= 0;

e72..    x53 - 82*b83 =L= 0;

e73..    x54 - 82.5*b84 =L= 0;

e74..    x7 - x15 + 6*b73 =L= 0;

e75..    x8 - x23 + 4*b74 =L= 0;

e76..    x16 - x24 + 5*b75 =L= 0;

e77..  - x9 + x17 + 6*b76 =L= 0;

e78..  - x10 + x25 + 4*b77 =L= 0;

e79..  - x18 + x26 + 5*b78 =L= 0;

e80..    x35 - x43 + 5.5*b79 =L= 0;

e81..    x36 - x51 + 4.5*b80 =L= 0;

e82..    x44 - x52 + 4*b81 =L= 0;

e83..  - x37 + x45 + 5.5*b82 =L= 0;

e84..  - x38 + x53 + 4.5*b83 =L= 0;

e85..  - x46 + x54 + 4*b84 =L= 0;

e86..    b73 + b76 + b79 + b82 =E= 1;

e87..    b74 + b77 + b80 + b83 =E= 1;

e88..    b75 + b78 + b81 + b84 =E= 1;

e89..    x1 - x55 - x58 - x61 =E= 0;

e90..    x2 - x56 - x59 - x62 =E= 0;

e91..    x3 - x57 - x60 - x63 =E= 0;

e92..    x4 - x64 - x67 - x70 =E= 0;

e93..    x5 - x65 - x68 - x71 =E= 0;

e94..    x6 - x66 - x69 - x72 =E= 0;

e95..    x55 - 18.5*b85 =L= 0;

e96..    x56 - 17.5*b86 =L= 0;

e97..    x57 - 19.5*b87 =L= 0;

e98..    x58 - 52.5*b88 =L= 0;

e99..    x59 - 51.5*b89 =L= 0;

e100..    x60 - 53.5*b90 =L= 0;

e101..    x61 - 31.5*b91 =L= 0;

e102..    x62 - 30.5*b92 =L= 0;

e103..    x63 - 32.5*b93 =L= 0;

e104..    x64 - 13*b85 =L= 0;

e105..    x65 - 13.5*b86 =L= 0;

e106..    x66 - 14.5*b87 =L= 0;

e107..    x67 - 82*b88 =L= 0;

e108..    x68 - 82.5*b89 =L= 0;

e109..    x69 - 83.5*b90 =L= 0;

e110..    x70 - 51*b91 =L= 0;

e111..    x71 - 51.5*b92 =L= 0;

e112..    x72 - 52.5*b93 =L= 0;

e113.. (sqr(x55/(1e-6 + b85)) - 35*x55/(1e-6 + b85) + 306.25*b85 + sqr(x64/(
       1e-6 + b85)) - 14*x64/(1e-6 + b85) + 49*b85 - 36*b85)*(1e-6 + b85) =L= 0
       ;

e114.. (sqr(x56/(1e-6 + b86)) - 37*x56/(1e-6 + b86) + 342.25*b86 + sqr(x65/(
       1e-6 + b86)) - 15*x65/(1e-6 + b86) + 56.25*b86 - 36*b86)*(1e-6 + b86)
        =L= 0;

e115.. (sqr(x57/(1e-6 + b87)) - 33*x57/(1e-6 + b87) + 272.25*b87 + sqr(x66/(
       1e-6 + b87)) - 17*x66/(1e-6 + b87) + 72.25*b87 - 36*b87)*(1e-6 + b87)
        =L= 0;

e116.. (sqr(x58/(1e-6 + b88)) - 105*x58/(1e-6 + b88) + 2756.25*b88 + sqr(x67/(
       1e-6 + b88)) - 154*x67/(1e-6 + b88) + 5929*b88 - 25*b88)*(1e-6 + b88)
        =L= 0;

e117.. (sqr(x59/(1e-6 + b89)) - 107*x59/(1e-6 + b89) + 2862.25*b89 + sqr(x68/(
       1e-6 + b89)) - 155*x68/(1e-6 + b89) + 6006.25*b89 - 25*b89)*(1e-6 + b89)
        =L= 0;

e118.. (sqr(x60/(1e-6 + b90)) - 103*x60/(1e-6 + b90) + 2652.25*b90 + sqr(x69/(
       1e-6 + b90)) - 157*x69/(1e-6 + b90) + 6162.25*b90 - 25*b90)*(1e-6 + b90)
        =L= 0;

e119.. (sqr(x61/(1e-6 + b91)) - 65*x61/(1e-6 + b91) + 1056.25*b91 + sqr(x70/(
       1e-6 + b91)) - 94*x70/(1e-6 + b91) + 2209*b91 - 16*b91)*(1e-6 + b91)
        =L= 0;

e120.. (sqr(x62/(1e-6 + b92)) - 67*x62/(1e-6 + b92) + 1122.25*b92 + sqr(x71/(
       1e-6 + b92)) - 95*x71/(1e-6 + b92) + 2256.25*b92 - 16*b92)*(1e-6 + b92)
        =L= 0;

e121.. (sqr(x63/(1e-6 + b93)) - 63*x63/(1e-6 + b93) + 992.25*b93 + sqr(x72/(
       1e-6 + b93)) - 97*x72/(1e-6 + b93) + 2352.25*b93 - 16*b93)*(1e-6 + b93)
        =L= 0;

e122.. (sqr(x55/(1e-6 + b85)) - 35*x55/(1e-6 + b85) + 306.25*b85 + sqr(x64/(
       1e-6 + b85)) - 26*x64/(1e-6 + b85) + 169*b85 - 36*b85)*(1e-6 + b85)
        =L= 0;

e123.. (sqr(x56/(1e-6 + b86)) - 37*x56/(1e-6 + b86) + 342.25*b86 + sqr(x65/(
       1e-6 + b86)) - 25*x65/(1e-6 + b86) + 156.25*b86 - 36*b86)*(1e-6 + b86)
        =L= 0;

e124.. (sqr(x57/(1e-6 + b87)) - 33*x57/(1e-6 + b87) + 272.25*b87 + sqr(x66/(
       1e-6 + b87)) - 23*x66/(1e-6 + b87) + 132.25*b87 - 36*b87)*(1e-6 + b87)
        =L= 0;

e125.. (sqr(x58/(1e-6 + b88)) - 105*x58/(1e-6 + b88) + 2756.25*b88 + sqr(x67/(
       1e-6 + b88)) - 166*x67/(1e-6 + b88) + 6889*b88 - 25*b88)*(1e-6 + b88)
        =L= 0;

e126.. (sqr(x59/(1e-6 + b89)) - 107*x59/(1e-6 + b89) + 2862.25*b89 + sqr(x68/(
       1e-6 + b89)) - 165*x68/(1e-6 + b89) + 6806.25*b89 - 25*b89)*(1e-6 + b89)
        =L= 0;

e127.. (sqr(x60/(1e-6 + b90)) - 103*x60/(1e-6 + b90) + 2652.25*b90 + sqr(x69/(
       1e-6 + b90)) - 163*x69/(1e-6 + b90) + 6642.25*b90 - 25*b90)*(1e-6 + b90)
        =L= 0;

e128.. (sqr(x61/(1e-6 + b91)) - 65*x61/(1e-6 + b91) + 1056.25*b91 + sqr(x70/(
       1e-6 + b91)) - 106*x70/(1e-6 + b91) + 2809*b91 - 16*b91)*(1e-6 + b91)
        =L= 0;

e129.. (sqr(x62/(1e-6 + b92)) - 67*x62/(1e-6 + b92) + 1122.25*b92 + sqr(x71/(
       1e-6 + b92)) - 105*x71/(1e-6 + b92) + 2756.25*b92 - 16*b92)*(1e-6 + b92)
        =L= 0;

e130.. (sqr(x63/(1e-6 + b93)) - 63*x63/(1e-6 + b93) + 992.25*b93 + sqr(x72/(
       1e-6 + b93)) - 103*x72/(1e-6 + b93) + 2652.25*b93 - 16*b93)*(1e-6 + b93)
        =L= 0;

e131.. (sqr(x55/(1e-6 + b85)) - 25*x55/(1e-6 + b85) + 156.25*b85 + sqr(x64/(
       1e-6 + b85)) - 14*x64/(1e-6 + b85) + 49*b85 - 36*b85)*(1e-6 + b85) =L= 0
       ;

e132.. (sqr(x56/(1e-6 + b86)) - 23*x56/(1e-6 + b86) + 132.25*b86 + sqr(x65/(
       1e-6 + b86)) - 15*x65/(1e-6 + b86) + 56.25*b86 - 36*b86)*(1e-6 + b86)
        =L= 0;

e133.. (sqr(x57/(1e-6 + b87)) - 27*x57/(1e-6 + b87) + 182.25*b87 + sqr(x66/(
       1e-6 + b87)) - 17*x66/(1e-6 + b87) + 72.25*b87 - 36*b87)*(1e-6 + b87)
        =L= 0;

e134.. (sqr(x58/(1e-6 + b88)) - 95*x58/(1e-6 + b88) + 2256.25*b88 + sqr(x67/(
       1e-6 + b88)) - 154*x67/(1e-6 + b88) + 5929*b88 - 25*b88)*(1e-6 + b88)
        =L= 0;

e135.. (sqr(x59/(1e-6 + b89)) - 93*x59/(1e-6 + b89) + 2162.25*b89 + sqr(x68/(
       1e-6 + b89)) - 155*x68/(1e-6 + b89) + 6006.25*b89 - 25*b89)*(1e-6 + b89)
        =L= 0;

e136.. (sqr(x60/(1e-6 + b90)) - 97*x60/(1e-6 + b90) + 2352.25*b90 + sqr(x69/(
       1e-6 + b90)) - 157*x69/(1e-6 + b90) + 6162.25*b90 - 25*b90)*(1e-6 + b90)
        =L= 0;

e137.. (sqr(x61/(1e-6 + b91)) - 55*x61/(1e-6 + b91) + 756.25*b91 + sqr(x70/(
       1e-6 + b91)) - 94*x70/(1e-6 + b91) + 2209*b91 - 16*b91)*(1e-6 + b91)
        =L= 0;

e138.. (sqr(x62/(1e-6 + b92)) - 53*x62/(1e-6 + b92) + 702.25*b92 + sqr(x71/(
       1e-6 + b92)) - 95*x71/(1e-6 + b92) + 2256.25*b92 - 16*b92)*(1e-6 + b92)
        =L= 0;

e139.. (sqr(x63/(1e-6 + b93)) - 57*x63/(1e-6 + b93) + 812.25*b93 + sqr(x72/(
       1e-6 + b93)) - 97*x72/(1e-6 + b93) + 2352.25*b93 - 16*b93)*(1e-6 + b93)
        =L= 0;

e140.. (sqr(x55/(1e-6 + b85)) - 25*x55/(1e-6 + b85) + 156.25*b85 + sqr(x64/(
       1e-6 + b85)) - 26*x64/(1e-6 + b85) + 169*b85 - 36*b85)*(1e-6 + b85)
        =L= 0;

e141.. (sqr(x56/(1e-6 + b86)) - 23*x56/(1e-6 + b86) + 132.25*b86 + sqr(x65/(
       1e-6 + b86)) - 25*x65/(1e-6 + b86) + 156.25*b86 - 36*b86)*(1e-6 + b86)
        =L= 0;

e142.. (sqr(x57/(1e-6 + b87)) - 27*x57/(1e-6 + b87) + 182.25*b87 + sqr(x66/(
       1e-6 + b87)) - 23*x66/(1e-6 + b87) + 132.25*b87 - 36*b87)*(1e-6 + b87)
        =L= 0;

e143.. (sqr(x58/(1e-6 + b88)) - 95*x58/(1e-6 + b88) + 2256.25*b88 + sqr(x67/(
       1e-6 + b88)) - 166*x67/(1e-6 + b88) + 6889*b88 - 25*b88)*(1e-6 + b88)
        =L= 0;

e144.. (sqr(x59/(1e-6 + b89)) - 93*x59/(1e-6 + b89) + 2162.25*b89 + sqr(x68/(
       1e-6 + b89)) - 165*x68/(1e-6 + b89) + 6806.25*b89 - 25*b89)*(1e-6 + b89)
        =L= 0;

e145.. (sqr(x60/(1e-6 + b90)) - 97*x60/(1e-6 + b90) + 2352.25*b90 + sqr(x69/(
       1e-6 + b90)) - 163*x69/(1e-6 + b90) + 6642.25*b90 - 25*b90)*(1e-6 + b90)
        =L= 0;

e146.. (sqr(x61/(1e-6 + b91)) - 55*x61/(1e-6 + b91) + 756.25*b91 + sqr(x70/(
       1e-6 + b91)) - 106*x70/(1e-6 + b91) + 2809*b91 - 16*b91)*(1e-6 + b91)
        =L= 0;

e147.. (sqr(x62/(1e-6 + b92)) - 53*x62/(1e-6 + b92) + 702.25*b92 + sqr(x71/(
       1e-6 + b92)) - 105*x71/(1e-6 + b92) + 2756.25*b92 - 16*b92)*(1e-6 + b92)
        =L= 0;

e148.. (sqr(x63/(1e-6 + b93)) - 57*x63/(1e-6 + b93) + 812.25*b93 + sqr(x72/(
       1e-6 + b93)) - 103*x72/(1e-6 + b93) + 2652.25*b93 - 16*b93)*(1e-6 + b93)
        =L= 0;

e149..    b85 + b88 + b91 =E= 1;

e150..    b86 + b89 + b92 =E= 1;

e151..    b87 + b90 + b93 =E= 1;

* set non-default bounds
x1.lo = 11.5; x1.up = 52.5;
x2.lo = 12.5; x2.up = 51.5;
x3.lo = 10.5; x3.up = 53.5;
x4.lo = 7; x4.up = 82;
x5.lo = 6.5; x5.up = 82.5;
x6.lo = 5.5; x6.up = 83.5;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0