MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance csched1a

Corrected version of csched1.
The printed version of the paper had some data inconsistencies.
The objective of the models also has been reformulated.
Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-30430.17682000 p1 ( gdx sol )
(infeas: 7e-12)
Other points (infeas > 1e-08)  
Dual Bounds
-30430.18753000 (ANTIGONE)
-30430.17685000 (BARON)
-30430.17700000 (COUENNE)
-30430.17682000 (LINDO)
-30430.18047000 (SCIP)
References And, Vipul J and Grossmann, I E, Cyclic Scheduling of Continuous Parallel Units with Decaying Performance, American Institute of Chemical Engineers Journal, 44:7, 1998, 1623-1636.
Source modified MacMINLP model c-sched.mod with c-sched1.dat, GAMS Model Library model csched
Application Cyclic Scheduling of Continuous Parallel Units
Added to library 14 Jun 2007
Problem type MBNLP
#Variables 28
#Binary Variables 15
#Integer Variables 0
#Nonlinear Variables 7
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature indefinite
#Nonzeros in Objective 7
#Nonlinear Nonzeros in Objective 7
#Constraints 22
#Linear Constraints 22
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div exp mul
Constraints curvature linear
#Nonzeros in Jacobian 70
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 25
#Nonzeros in Diagonal of Hessian of Lagrangian 7
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 7
Maximal blocksize in Hessian of Lagrangian 7
Average blocksize in Hessian of Lagrangian 7.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-02
Maximal coefficient 4.1600e+05
Infeasibility of initial point 3.5e+04
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         23       13        3        7        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         29       14       15        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         78       71        7        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,b14,b15,b16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,objvar;

Positive Variables  x1,x2,x3,x7,x8,x9,x10,x11,x12,x13;

Binary Variables  b14,b15,b16,b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23;


e1.. ((416000 - 416000*exp(-0.1*x1/x4))*x4 + 37440*x1 - 100*x4 + (
     124615.384615385 - 124615.384615385*exp(-0.13*x2/x5))*x5 + 9000*x2 - 90*x5
      + (278666.666666667 - 278666.666666667*exp(-0.09*x3/x6))*x6 + 15840*x3 - 
     80*x6)/x13 + objvar =E= 0;

e2..  - 1300*x1 + x7 + 350*x13 =E= 0;

e3..  - 1000*x2 + x8 + 300*x13 =E= 0;

e4..  - 1100*x3 + x9 + 300*x13 =E= 0;

e5..    x7 - 300*x13 =L= 0;

e6..    x8 - 300*x13 =L= 0;

e7..    x9 - 300*x13 =L= 0;

e8..    x4 - 0.01*b14 - b15 - 2*b16 - 3*b17 - 4*b18 =E= 0;

e9..    x5 - 0.01*b19 - b20 - 2*b21 - 3*b22 - 4*b23 =E= 0;

e10..    x6 - 0.01*b24 - b25 - 2*b26 - 3*b27 - 4*b28 =E= 0;

e11..  - b14 - b15 - b16 - b17 - b18 =E= -1;

e12..  - b19 - b20 - b21 - b22 - b23 =E= -1;

e13..  - b24 - b25 - b26 - b27 - b28 =E= -1;

e14..  - x1 - 2*x4 + x10 =E= 0;

e15..  - x2 - 3*x5 + x11 =E= 0;

e16..  - x3 - 3*x6 + x12 =E= 0;

e17..    x10 + x11 + x12 - x13 =L= 0;

e18..    x1 + 150*b14 =L= 150;

e19..    x2 + 150*b19 =L= 150;

e20..    x3 + 150*b24 =L= 150;

e21..    x4 =G= 1;

e22..    x5 =G= 1;

e23..    x6 =G= 1;

* set non-default bounds
x4.lo = 0.01; x4.up = 4;
x5.lo = 0.01; x5.up = 4;
x6.lo = 0.01; x6.up = 4;

* set non-default levels
x4.l = 1;
x5.l = 1;
x6.l = 1;
x13.l = 100;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0