MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance csched1a
Corrected version of csched1. The printed version of the paper had some data inconsistencies. The objective of the models also has been reformulated.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -30430.18753000 (ANTIGONE) -30430.17685000 (BARON) -30430.17700000 (COUENNE) -30430.17682000 (LINDO) -30430.18047000 (SCIP) |
Referencesⓘ | And, Vipul J and Grossmann, I E, Cyclic Scheduling of Continuous Parallel Units with Decaying Performance, American Institute of Chemical Engineers Journal, 44:7, 1998, 1623-1636. |
Sourceⓘ | modified MacMINLP model c-sched.mod with c-sched1.dat, GAMS Model Library model csched |
Applicationⓘ | Cyclic Scheduling of Continuous Parallel Units |
Added to libraryⓘ | 14 Jun 2007 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 28 |
#Binary Variablesⓘ | 15 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 7 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 7 |
#Nonlinear Nonzeros in Objectiveⓘ | 7 |
#Constraintsⓘ | 22 |
#Linear Constraintsⓘ | 22 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div exp mul |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 70 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 25 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 7 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-02 |
Maximal coefficientⓘ | 4.1600e+05 |
Infeasibility of initial pointⓘ | 3.5e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 23 13 3 7 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 29 14 15 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 78 71 7 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,objvar; Positive Variables x1,x2,x3,x7,x8,x9,x10,x11,x12,x13; Binary Variables b14,b15,b16,b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23; e1.. ((416000 - 416000*exp(-0.1*x1/x4))*x4 + 37440*x1 - 100*x4 + ( 124615.384615385 - 124615.384615385*exp(-0.13*x2/x5))*x5 + 9000*x2 - 90*x5 + (278666.666666667 - 278666.666666667*exp(-0.09*x3/x6))*x6 + 15840*x3 - 80*x6)/x13 + objvar =E= 0; e2.. - 1300*x1 + x7 + 350*x13 =E= 0; e3.. - 1000*x2 + x8 + 300*x13 =E= 0; e4.. - 1100*x3 + x9 + 300*x13 =E= 0; e5.. x7 - 300*x13 =L= 0; e6.. x8 - 300*x13 =L= 0; e7.. x9 - 300*x13 =L= 0; e8.. x4 - 0.01*b14 - b15 - 2*b16 - 3*b17 - 4*b18 =E= 0; e9.. x5 - 0.01*b19 - b20 - 2*b21 - 3*b22 - 4*b23 =E= 0; e10.. x6 - 0.01*b24 - b25 - 2*b26 - 3*b27 - 4*b28 =E= 0; e11.. - b14 - b15 - b16 - b17 - b18 =E= -1; e12.. - b19 - b20 - b21 - b22 - b23 =E= -1; e13.. - b24 - b25 - b26 - b27 - b28 =E= -1; e14.. - x1 - 2*x4 + x10 =E= 0; e15.. - x2 - 3*x5 + x11 =E= 0; e16.. - x3 - 3*x6 + x12 =E= 0; e17.. x10 + x11 + x12 - x13 =L= 0; e18.. x1 + 150*b14 =L= 150; e19.. x2 + 150*b19 =L= 150; e20.. x3 + 150*b24 =L= 150; e21.. x4 =G= 1; e22.. x5 =G= 1; e23.. x6 =G= 1; * set non-default bounds x4.lo = 0.01; x4.up = 4; x5.lo = 0.01; x5.up = 4; x6.lo = 0.01; x6.up = 4; * set non-default levels x4.l = 1; x5.l = 1; x6.l = 1; x13.l = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f