MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance dispatch

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
3155.28792700 p1 ( gdx sol )
(infeas: 2e-16)
Other points (infeas > 1e-08)  
Dual Bounds
3155.28792700 (ANTIGONE)
3155.28792400 (BARON)
3155.28787500 (COUENNE)
3155.28791800 (GUROBI)
3155.28792700 (LINDO)
3155.28792700 (SCIP)
3155.28792700 (SHOT)
References Wood, A J and Wollenberg, B F, Example Problem 4e. In Wood, A J and Wollenberg, B F, Power Generation, Operation and Control, John Wiley and Sons, 1984, 85-88.
Source GAMS Model Library model dispatch
Application Unit Commitment
Added to library 31 Jul 2001
Problem type QCQP
#Variables 4
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 3
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 3
#Nonlinear Nonzeros in Objective 3
#Constraints 2
#Linear Constraints 1
#Quadratic Constraints 1
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 8
#Nonlinear Nonzeros in Jacobian 3
#Nonzeros in (Upper-Left) Hessian of Lagrangian 9
#Nonzeros in Diagonal of Hessian of Lagrangian 3
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 3
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 3.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 3.4200e-05
Maximal coefficient 1.1669e+01
Infeasibility of initial point 77.5
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          3        2        1        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          5        5        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         12        6        6        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,objvar;

Equations  e1,e2,e3;


e1.. -(0.00533*sqr(x1) + 11.669*x1 + 0.00889*sqr(x2) + 10.333*x2 + 0.00741*sqr(
     x3) + 10.833*x3) + objvar =E= 653.1;

e2.. -(0.01*(0.0676*x1*x1 + 0.00953*x1*x2 - 0.00507*x1*x3 + 0.00953*x2*x1 + 
     0.0521*x2*x2 + 0.00901*x2*x3 - 0.00507*x3*x1 + 0.00901*x3*x2 + 0.0294*x3*
     x3) - 0.000766*x1 - 3.42e-5*x2 + 0.000189*x3) + x4 =E= 0.040357;

e3..    x1 + x2 + x3 - x4 =G= 210;

* set non-default bounds
x1.lo = 50; x1.up = 200;
x2.lo = 37.5; x2.up = 150;
x3.lo = 45; x3.up = 180;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0