MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance eniplac
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -132400.45170000 (ANTIGONE) -132117.08300000 (BARON) -132117.00000000 (COUENNE) -132117.00000000 (LINDO) -132117.00000000 (SCIP) -245835.00000000 (SHOT) |
Sourceⓘ | GAMS Client |
Applicationⓘ | Unit Commitment |
Added to libraryⓘ | 08 Aug 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 141 |
#Binary Variablesⓘ | 24 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 48 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 189 |
#Linear Constraintsⓘ | 165 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 24 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 507 |
#Nonlinear Nonzeros in Jacobianⓘ | 48 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 72 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 24 |
#Blocks in Hessian of Lagrangianⓘ | 24 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-04 |
Maximal coefficientⓘ | 6.5732e+02 |
Infeasibility of initial pointⓘ | 2.31e+05 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 190 88 30 72 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 142 118 24 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 511 463 48 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,objvar,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x49,x50,x51,x52,x53,x54,x55,x56,x57,x58 ,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75 ,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92 ,x93,x94,x95,x96,x99,x100,x101,x102,x103,x104,x105,x106,x107,x108 ,x109,x110,x111,x112,x114,x115,x116,x117; Binary Variables b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129,b130 ,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190; e1.. - 3.3*x73 - 3.2*x74 - 3.1*x75 - 3.25*x76 - 3.3*x77 - 3.2*x78 - 3.1*x79 - 3.25*x80 - 3.3*x81 - 3.2*x82 - 3.1*x83 - 3.25*x84 - 3.3*x85 - 3.2*x86 - 3.1*x87 - 3.25*x88 - 3.3*x89 - 3.2*x90 - 3.1*x91 - 3.25*x92 - 3.3*x93 - 3.2*x94 - 3.1*x95 - 3.25*x96 + x113 =E= 0; e2.. - 33*x105 - 33*x106 - 33*x107 - 33*x108 - 33*x109 - 33*x110 + x112 =E= 0; e3.. x25 - b119 =E= 0; e4.. x26 - b120 =E= 0; e5.. x27 - b121 =E= 0; e6.. x28 - b122 =E= 0; e7.. x29 - b123 =E= 0; e8.. x30 - b124 =E= 0; e9.. x31 - b125 =E= 0; e10.. x32 - b126 =E= 0; e11.. x33 - b127 =E= 0; e12.. x34 - b128 =E= 0; e13.. x35 - b129 =E= 0; e14.. x36 - b130 =E= 0; e15.. x37 - b131 =E= 0; e16.. x38 - b132 =E= 0; e17.. x39 - b133 =E= 0; e18.. x40 - b134 =E= 0; e19.. x41 - b135 =E= 0; e20.. x42 - b136 =E= 0; e21.. x43 - b137 =E= 0; e22.. x44 - b138 =E= 0; e23.. x45 - b139 =E= 0; e24.. x46 - b140 =E= 0; e25.. x47 - b141 =E= 0; e26.. x48 - b142 =E= 0; e27.. x1 + x2 + x3 + x4 - x99 + x105 =E= 1170; e28.. x5 + x6 + x7 + x8 - x100 + x106 =E= 950; e29.. x9 + x10 + x11 + x12 - x101 + x107 =E= 950; e30.. x13 + x14 + x15 + x16 - x102 + x108 =E= 700; e31.. x17 + x18 + x19 + x20 - x103 + x109 =E= 600; e32.. x21 + x22 + x23 + x24 - x104 + x110 =E= 250; e33.. -(601.56 + 0.0131*sqr(x1) + 1.0622*x1)*x25 + x73 =E= 0; e34.. -(-92.8095 + 10.04286*x2 - 0.01048*sqr(x2))*x26 + x74 =E= 0; e35.. -(657.32 + 0.018317*sqr(x3))*x27 + x75 =E= 0; e36.. -(222.2 + 0.0001*sqr(x4) + 6.2749*x4)*x28 + x76 =E= 0; e37.. -(601.56 + 0.0131*sqr(x5) + 1.0622*x5)*x29 + x77 =E= 0; e38.. -(-92.8095 + 10.04286*x6 - 0.01048*sqr(x6))*x30 + x78 =E= 0; e39.. -(657.32 + 0.018317*sqr(x7))*x31 + x79 =E= 0; e40.. -(222.2 + 0.0001*sqr(x8) + 6.2749*x8)*x32 + x80 =E= 0; e41.. -(601.56 + 0.0131*sqr(x9) + 1.0622*x9)*x33 + x81 =E= 0; e42.. -(-92.8095 + 10.04286*x10 - 0.01048*sqr(x10))*x34 + x82 =E= 0; e43.. -(657.32 + 0.018317*sqr(x11))*x35 + x83 =E= 0; e44.. -(222.2 + 0.0001*sqr(x12) + 6.2749*x12)*x36 + x84 =E= 0; e45.. -(601.56 + 0.0131*sqr(x13) + 1.0622*x13)*x37 + x85 =E= 0; e46.. -(-92.8095 + 10.04286*x14 - 0.01048*sqr(x14))*x38 + x86 =E= 0; e47.. -(657.32 + 0.018317*sqr(x15))*x39 + x87 =E= 0; e48.. -(222.2 + 0.0001*sqr(x16) + 6.2749*x16)*x40 + x88 =E= 0; e49.. -(601.56 + 0.0131*sqr(x17) + 1.0622*x17)*x41 + x89 =E= 0; e50.. -(-92.8095 + 10.04286*x18 - 0.01048*sqr(x18))*x42 + x90 =E= 0; e51.. -(657.32 + 0.018317*sqr(x19))*x43 + x91 =E= 0; e52.. -(222.2 + 0.0001*sqr(x20) + 6.2749*x20)*x44 + x92 =E= 0; e53.. -(601.56 + 0.0131*sqr(x21) + 1.0622*x21)*x45 + x93 =E= 0; e54.. -(-92.8095 + 10.04286*x22 - 0.01048*sqr(x22))*x46 + x94 =E= 0; e55.. -(657.32 + 0.018317*sqr(x23))*x47 + x95 =E= 0; e56.. -(222.2 + 0.0001*sqr(x24) + 6.2749*x24)*x48 + x96 =E= 0; e57.. - x73 - x77 - x81 - x85 - x89 - x93 + x114 =E= 0; e58.. - x74 - x78 - x82 - x86 - x90 - x94 + x115 =E= 0; e59.. - x75 - x79 - x83 - x87 - x91 - x95 + x116 =E= 0; e60.. - x76 - x80 - x84 - x88 - x92 - x96 + x117 =E= 0; e61.. x98 =E= 231000; e62.. - 30*x99 - 30*x100 - 30*x101 - 30*x102 - 30*x103 - 30*x104 + x111 =E= 0; e63.. x97 - x98 - x111 =E= 0; e64.. - x1 + x5 =L= 500; e65.. - x2 + x6 =L= 500; e66.. - x3 + x7 =L= 500; e67.. - x4 + x8 =L= 500; e68.. - x5 + x9 =L= 500; e69.. - x6 + x10 =L= 500; e70.. - x7 + x11 =L= 500; e71.. - x8 + x12 =L= 500; e72.. - x9 + x13 =L= 500; e73.. - x10 + x14 =L= 500; e74.. - x11 + x15 =L= 500; e75.. - x12 + x16 =L= 500; e76.. - x13 + x17 =L= 500; e77.. - x14 + x18 =L= 500; e78.. - x15 + x19 =L= 500; e79.. - x16 + x20 =L= 500; e80.. - x17 + x21 =L= 500; e81.. - x18 + x22 =L= 500; e82.. - x19 + x23 =L= 500; e83.. - x20 + x24 =L= 500; e84.. x1 - x5 =L= 500; e85.. x2 - x6 =L= 500; e86.. x3 - x7 =L= 500; e87.. x4 - x8 =L= 500; e88.. x5 - x9 =L= 500; e89.. x6 - x10 =L= 500; e90.. x7 - x11 =L= 500; e91.. x8 - x12 =L= 500; e92.. x9 - x13 =L= 500; e93.. x10 - x14 =L= 500; e94.. x11 - x15 =L= 500; e95.. x12 - x16 =L= 500; e96.. x13 - x17 =L= 500; e97.. x14 - x18 =L= 500; e98.. x15 - x19 =L= 500; e99.. x16 - x20 =L= 500; e100.. x17 - x21 =L= 500; e101.. x18 - x22 =L= 500; e102.. x19 - x23 =L= 500; e103.. x20 - x24 =L= 500; e104.. x1 =L= 800; e105.. x2 =L= 650; e106.. x3 =L= 660; e107.. x4 =L= 750; e108.. - x1 =L= 200; e109.. - x2 =L= 350; e110.. - x3 =L= 340; e111.. - x4 =L= 250; e112.. x1 + x49 - 250*b119 =E= 0; e113.. x2 + x50 - 170*b120 =E= 0; e114.. x3 + x51 - 260*b121 =E= 0; e115.. x4 + x52 - 510*b122 =E= 0; e116.. x5 + x53 - 250*b123 =E= 0; e117.. x6 + x54 - 170*b124 =E= 0; e118.. x7 + x55 - 260*b125 =E= 0; e119.. x8 + x56 - 510*b126 =E= 0; e120.. x9 + x57 - 250*b127 =E= 0; e121.. x10 + x58 - 170*b128 =E= 0; e122.. x11 + x59 - 260*b129 =E= 0; e123.. x12 + x60 - 510*b130 =E= 0; e124.. x13 + x61 - 250*b131 =E= 0; e125.. x14 + x62 - 170*b132 =E= 0; e126.. x15 + x63 - 260*b133 =E= 0; e127.. x16 + x64 - 510*b134 =E= 0; e128.. x17 + x65 - 250*b135 =E= 0; e129.. x18 + x66 - 170*b136 =E= 0; e130.. x19 + x67 - 260*b137 =E= 0; e131.. x20 + x68 - 510*b138 =E= 0; e132.. x21 + x69 - 250*b139 =E= 0; e133.. x22 + x70 - 170*b140 =E= 0; e134.. x23 + x71 - 260*b141 =E= 0; e135.. x24 + x72 - 510*b142 =E= 0; e136.. x49 + x50 + x51 + x52 =G= 25; e137.. x53 + x54 + x55 + x56 =G= 25; e138.. x57 + x58 + x59 + x60 =G= 25; e139.. x61 + x62 + x63 + x64 =G= 25; e140.. x65 + x66 + x67 + x68 =G= 25; e141.. x69 + x70 + x71 + x72 =G= 25; e142.. x1 - 250*b119 =L= 0; e143.. x2 - 170*b120 =L= 0; e144.. x3 - 260*b121 =L= 0; e145.. x4 - 510*b122 =L= 0; e146.. x5 - 250*b123 =L= 0; e147.. x6 - 170*b124 =L= 0; e148.. x7 - 260*b125 =L= 0; e149.. x8 - 510*b126 =L= 0; e150.. x9 - 250*b127 =L= 0; e151.. x10 - 170*b128 =L= 0; e152.. x11 - 260*b129 =L= 0; e153.. x12 - 510*b130 =L= 0; e154.. x13 - 250*b131 =L= 0; e155.. x14 - 170*b132 =L= 0; e156.. x15 - 260*b133 =L= 0; e157.. x16 - 510*b134 =L= 0; e158.. x17 - 250*b135 =L= 0; e159.. x18 - 170*b136 =L= 0; e160.. x19 - 260*b137 =L= 0; e161.. x20 - 510*b138 =L= 0; e162.. x21 - 250*b139 =L= 0; e163.. x22 - 170*b140 =L= 0; e164.. x23 - 260*b141 =L= 0; e165.. x24 - 510*b142 =L= 0; e166.. x1 - 140*b119 =G= 0; e167.. x2 - 140*b120 =G= 0; e168.. x3 - 140*b121 =G= 0; e169.. x4 - 160*b122 =G= 0; e170.. x5 - 140*b123 =G= 0; e171.. x6 - 140*b124 =G= 0; e172.. x7 - 140*b125 =G= 0; e173.. x8 - 160*b126 =G= 0; e174.. x9 - 140*b127 =G= 0; e175.. x10 - 140*b128 =G= 0; e176.. x11 - 140*b129 =G= 0; e177.. x12 - 160*b130 =G= 0; e178.. x13 - 140*b131 =G= 0; e179.. x14 - 140*b132 =G= 0; e180.. x15 - 140*b133 =G= 0; e181.. x16 - 160*b134 =G= 0; e182.. x17 - 140*b135 =G= 0; e183.. x18 - 140*b136 =G= 0; e184.. x19 - 140*b137 =G= 0; e185.. x20 - 160*b138 =G= 0; e186.. x21 - 140*b139 =G= 0; e187.. x22 - 140*b140 =G= 0; e188.. x23 - 140*b141 =G= 0; e189.. x24 - 160*b142 =G= 0; e190.. - x97 + x112 + x113 - objvar =E= 0; * set non-default bounds x99.up = 500; x100.up = 100; x101.up = 100; x102.up = 100; x103.up = 100; x104.up = 100; x105.up = 500; x106.up = 500; x107.up = 500; x108.up = 500; x109.up = 500; x110.up = 500; * set non-default levels x1.l = 250; x2.l = 170; x3.l = 260; x4.l = 510; x5.l = 250; x6.l = 170; x7.l = 260; x8.l = 510; x9.l = 250; x10.l = 170; x11.l = 260; x12.l = 510; x13.l = 250; x14.l = 170; x15.l = 260; x16.l = 510; x17.l = 250; x18.l = 170; x19.l = 260; x20.l = 510; x21.l = 250; x22.l = 170; x23.l = 260; x24.l = 510; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f