MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance enpro56pb

enpro56 with added bounds to avoid evaluation errors
Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
263428.30100000 p1 ( gdx sol )
(infeas: 1e-11)
Other points (infeas > 1e-08)  
Dual Bounds
263428.30010000 (ALPHAECP)
263428.28340000 (ANTIGONE)
263428.30070000 (BARON)
263428.30090000 (BONMIN)
263428.29660000 (COUENNE)
263428.30100000 (LINDO)
263428.30100000 (SCIP)
263428.01470000 (SHOT)
Source Aldo Vecchietti's Model Collection, modified
Application Batch processing
Added to library 14 Jun 2007
Problem type MBNLP
#Variables 127
#Binary Variables 73
#Integer Variables 0
#Nonlinear Variables 24
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature convex
#Nonzeros in Objective 19
#Nonlinear Nonzeros in Objective 19
#Constraints 191
#Linear Constraints 190
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 1
Operands in Gen. Nonlin. Functions exp
Constraints curvature convex
#Nonzeros in Jacobian 631
#Nonlinear Nonzeros in Jacobian 5
#Nonzeros in (Upper-Left) Hessian of Lagrangian 60
#Nonzeros in Diagonal of Hessian of Lagrangian 24
#Blocks in Hessian of Lagrangian 12
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.0000e-01
Maximal coefficient 2.5000e+05
Infeasibility of initial point 8.54e+05
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        192       25      136       31        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        128       55       73        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        651      627       24        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,objvar,x50,x51,x52
          ,x53,x54,x55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69
          ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86
          ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102
          ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115
          ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128;

Positive Variables  x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48;

Binary Variables  b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
          ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192;


e1..    x1 - x7 + x37 =G= 2.06686275947298;

e2..    x2 - x8 + x38 =G= 0.693147180559945;

e3..    x3 - x9 + x39 =G= 1.64865862558738;

e4..    x4 - x10 + x40 =G= 1.58923520511658;

e5..    x5 - x11 + x41 =G= 1.80828877117927;

e6..    x6 - x12 + x42 =G= 1.43508452528932;

e7..    x1 - x13 + x37 =G= -0.356674943938732;

e8..    x2 - x14 + x38 =G= -0.22314355131421;

e9..    x3 - x15 + x39 =G= -0.105360515657826;

e10..    x4 - x16 + x40 =G= 1.22377543162212;

e11..    x5 - x17 + x41 =G= 0.741937344729377;

e12..    x6 - x18 + x42 =G= 0.916290731874155;

e13..    x1 - x19 + x37 =G= -0.356674943938732;

e14..    x2 - x20 + x38 =G= 0.955511445027436;

e15..    x3 - x21 + x39 =G= 0.470003629245736;

e16..    x4 - x22 + x40 =G= 1.28093384546206;

e17..    x5 - x23 + x41 =G= 1.16315080980568;

e18..    x6 - x24 + x42 =G= 1.06471073699243;

e19..    x1 - x25 + x37 =G= 1.54756250871601;

e20..    x2 - x26 + x38 =G= 0.832909122935104;

e21..    x3 - x27 + x39 =G= 0.470003629245736;

e22..    x4 - x28 + x40 =G= 0.993251773010283;

e23..    x5 - x29 + x41 =G= 0.182321556793955;

e24..    x6 - x30 + x42 =G= 0.916290731874155;

e25..    x1 - x31 + x37 =G= 0.182321556793955;

e26..    x2 - x32 + x38 =G= 1.28093384546206;

e27..    x3 - x33 + x39 =G= 0.8754687373539;

e28..    x4 - x34 + x40 =G= 1.50407739677627;

e29..    x5 - x35 + x41 =G= 0.470003629245736;

e30..    x6 - x36 + x42 =G= 0.741937344729377;

e31..    x7 + x43 + x51 =G= 1.85629799036563;

e32..    x8 + x44 + x51 =G= 1.54756250871601;

e33..    x9 + x45 + x51 =G= 2.11625551480255;

e34..    x10 + x46 + x51 =G= 1.3609765531356;

e35..    x11 + x47 + x51 =G= 0.741937344729377;

e36..    x12 + x48 + x51 =G= 0.182321556793955;

e37..    x13 + x43 + x52 =G= 1.91692261218206;

e38..    x14 + x44 + x52 =G= 1.85629799036563;

e39..    x15 + x45 + x52 =G= 1.87180217690159;

e40..    x16 + x46 + x52 =G= 1.48160454092422;

e41..    x17 + x47 + x52 =G= 0.832909122935104;

e42..    x18 + x48 + x52 =G= 1.16315080980568;

e43..    x19 + x43 + x53 =G= 0;

e44..    x20 + x44 + x53 =G= 1.84054963339749;

e45..    x21 + x45 + x53 =G= 1.68639895357023;

e46..    x22 + x46 + x53 =G= 2.47653840011748;

e47..    x23 + x47 + x53 =G= 1.7404661748405;

e48..    x24 + x48 + x53 =G= 1.82454929205105;

e49..    x25 + x43 + x54 =G= 1.16315080980568;

e50..    x26 + x44 + x54 =G= 1.09861228866811;

e51..    x27 + x45 + x54 =G= 1.25276296849537;

e52..    x28 + x46 + x54 =G= 1.19392246847243;

e53..    x29 + x47 + x54 =G= 1.02961941718116;

e54..    x30 + x48 + x54 =G= 1.22377543162212;

e55..    x31 + x43 + x55 =G= 0.741937344729377;

e56..    x32 + x44 + x55 =G= 0.916290731874155;

e57..    x33 + x45 + x55 =G= 1.43508452528932;

e58..    x34 + x46 + x55 =G= 1.28093384546206;

e59..    x35 + x47 + x55 =G= 1.30833281965018;

e60..    x36 + x48 + x55 =G= 0.78845736036427;

e61.. 250000*exp(x51) + 150000*exp(x52) + 180000*exp(x53) + 160000*exp(x54) + 
      120000*exp(x55) =L= 6000;

e62..  - x8 + x50 - 10*b104 =G= -7.69741490700595;

e63..  - x9 + x50 - 10*b105 =G= -7.69741490700595;

e64..  - x10 + x50 - 10*b106 =G= -7.69741490700595;

e65..  - x11 + x50 - 10*b107 =G= -7.69741490700595;

e66..  - x12 + x50 - 10*b108 =G= -7.69741490700595;

e67..  - x14 + x50 - 10*b109 =G= -7.69741490700595;

e68..  - x15 + x50 - 10*b110 =G= -7.69741490700595;

e69..  - x16 + x50 - 10*b111 =G= -7.69741490700595;

e70..  - x17 + x50 - 10*b112 =G= -7.69741490700595;

e71..  - x18 + x50 - 10*b113 =G= -7.69741490700595;

e72..  - x20 + x50 - 10*b114 =G= -7.69741490700595;

e73..  - x21 + x50 - 10*b115 =G= -7.69741490700595;

e74..  - x22 + x50 - 10*b116 =G= -7.69741490700595;

e75..  - x23 + x50 - 10*b117 =G= -7.69741490700595;

e76..  - x24 + x50 - 10*b118 =G= -7.69741490700595;

e77..  - x26 + x50 - 10*b119 =G= -7.69741490700595;

e78..  - x27 + x50 - 10*b120 =G= -7.69741490700595;

e79..  - x28 + x50 - 10*b121 =G= -7.69741490700595;

e80..  - x29 + x50 - 10*b122 =G= -7.69741490700595;

e81..  - x30 + x50 - 10*b123 =G= -7.69741490700595;

e82..  - x32 + x50 - 10*b124 =G= -7.69741490700595;

e83..  - x33 + x50 - 10*b125 =G= -7.69741490700595;

e84..  - x34 + x50 - 10*b126 =G= -7.69741490700595;

e85..  - x35 + x50 - 10*b127 =G= -7.69741490700595;

e86..  - x36 + x50 - 10*b128 =G= -7.69741490700595;

e87..  - x7 + x50 - 10*b104 =G= -7.69741490700595;

e88..  - x8 + x50 - 10*b105 =G= -7.69741490700595;

e89..  - x9 + x50 - 10*b106 =G= -7.69741490700595;

e90..  - x10 + x50 - 10*b107 =G= -7.69741490700595;

e91..  - x11 + x50 - 10*b108 =G= -7.69741490700595;

e92..  - x13 + x50 - 10*b109 =G= -7.69741490700595;

e93..  - x14 + x50 - 10*b110 =G= -7.69741490700595;

e94..  - x15 + x50 - 10*b111 =G= -7.69741490700595;

e95..  - x16 + x50 - 10*b112 =G= -7.69741490700595;

e96..  - x17 + x50 - 10*b113 =G= -7.69741490700595;

e97..  - x19 + x50 - 10*b114 =G= -7.69741490700595;

e98..  - x20 + x50 - 10*b115 =G= -7.69741490700595;

e99..  - x21 + x50 - 10*b116 =G= -7.69741490700595;

e100..  - x22 + x50 - 10*b117 =G= -7.69741490700595;

e101..  - x23 + x50 - 10*b118 =G= -7.69741490700595;

e102..  - x25 + x50 - 10*b119 =G= -7.69741490700595;

e103..  - x26 + x50 - 10*b120 =G= -7.69741490700595;

e104..  - x27 + x50 - 10*b121 =G= -7.69741490700595;

e105..  - x28 + x50 - 10*b122 =G= -7.69741490700595;

e106..  - x29 + x50 - 10*b123 =G= -7.69741490700595;

e107..  - x31 + x50 - 10*b124 =G= -7.69741490700595;

e108..  - x32 + x50 - 10*b125 =G= -7.69741490700595;

e109..  - x33 + x50 - 10*b126 =G= -7.69741490700595;

e110..  - x34 + x50 - 10*b127 =G= -7.69741490700595;

e111..  - x35 + x50 - 10*b128 =G= -7.69741490700595;

e112..    x37 - 0.693147180559945*b62 - 1.09861228866811*b68
        - 1.38629436111989*b74 =E= 0;

e113..    x38 - 0.693147180559945*b63 - 1.09861228866811*b69
        - 1.38629436111989*b75 =E= 0;

e114..    x39 - 0.693147180559945*b64 - 1.09861228866811*b70
        - 1.38629436111989*b76 =E= 0;

e115..    x40 - 0.693147180559945*b65 - 1.09861228866811*b71
        - 1.38629436111989*b77 =E= 0;

e116..    x41 - 0.693147180559945*b66 - 1.09861228866811*b72
        - 1.38629436111989*b78 =E= 0;

e117..    x42 - 0.693147180559945*b67 - 1.09861228866811*b73
        - 1.38629436111989*b79 =E= 0;

e118..    x43 - 0.693147180559945*b86 - 1.09861228866811*b92
        - 1.38629436111989*b98 =E= 0;

e119..    x44 - 0.693147180559945*b87 - 1.09861228866811*b93
        - 1.38629436111989*b99 =E= 0;

e120..    x45 - 0.693147180559945*b88 - 1.09861228866811*b94
        - 1.38629436111989*b100 =E= 0;

e121..    x46 - 0.693147180559945*b89 - 1.09861228866811*b95
        - 1.38629436111989*b101 =E= 0;

e122..    x47 - 0.693147180559945*b90 - 1.09861228866811*b96
        - 1.38629436111989*b102 =E= 0;

e123..    x48 - 0.693147180559945*b91 - 1.09861228866811*b97
        - 1.38629436111989*b103 =E= 0;

e124..    b56 + b62 + b68 + b74 =E= 1;

e125..    b57 + b63 + b69 + b75 =E= 1;

e126..    b58 + b64 + b70 + b76 =E= 1;

e127..    b59 + b65 + b71 + b77 =E= 1;

e128..    b60 + b66 + b72 + b78 =E= 1;

e129..    b61 + b67 + b73 + b79 =E= 1;

e130..    b80 + b86 + b92 + b98 =E= 1;

e131..    b81 + b87 + b93 + b99 =E= 1;

e132..    b82 + b88 + b94 + b100 =E= 1;

e133..    b83 + b89 + b95 + b101 =E= 1;

e134..    b84 + b90 + b96 + b102 =E= 1;

e135..    b85 + b91 + b97 + b103 =E= 1;

e136..    b104 + b105 + b106 + b107 + b108 =L= 1;

e137..    b109 + b110 + b111 + b112 + b113 =L= 1;

e138..    b114 + b115 + b116 + b117 + b118 =L= 1;

e139..    b119 + b120 + b121 + b122 + b123 =L= 1;

e140..    b124 + b125 + b126 + b127 + b128 =L= 1;

e141..    b104 + b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 + b113
        + b114 + b115 + b116 + b117 + b118 + b119 + b120 + b121 + b122 + b123
        + b124 + b125 + b126 + b127 + b128 =G= 1;

e142..    x7 - x8 - 0.693147180559945*b104 =L= 0;

e143..    x8 - x9 - 0.693147180559945*b105 =L= 0;

e144..    x9 - x10 - 0.693147180559945*b106 =L= 0;

e145..    x10 - x11 - 0.693147180559945*b107 =L= 0;

e146..    x11 - x12 - 0.693147180559945*b108 =L= 0;

e147..    x13 - x14 - 0.693147180559945*b109 =L= 0;

e148..    x14 - x15 - 0.693147180559945*b110 =L= 0;

e149..    x15 - x16 - 0.693147180559945*b111 =L= 0;

e150..    x16 - x17 - 0.693147180559945*b112 =L= 0;

e151..    x17 - x18 - 0.693147180559945*b113 =L= 0;

e152..    x19 - x20 - 0.693147180559945*b114 =L= 0;

e153..    x20 - x21 - 0.693147180559945*b115 =L= 0;

e154..    x21 - x22 - 0.693147180559945*b116 =L= 0;

e155..    x22 - x23 - 0.693147180559945*b117 =L= 0;

e156..    x23 - x24 - 0.693147180559945*b118 =L= 0;

e157..    x25 - x26 - 0.693147180559945*b119 =L= 0;

e158..    x26 - x27 - 0.693147180559945*b120 =L= 0;

e159..    x27 - x28 - 0.693147180559945*b121 =L= 0;

e160..    x28 - x29 - 0.693147180559945*b122 =L= 0;

e161..    x29 - x30 - 0.693147180559945*b123 =L= 0;

e162..    x31 - x32 - 0.693147180559945*b124 =L= 0;

e163..    x32 - x33 - 0.693147180559945*b125 =L= 0;

e164..    x33 - x34 - 0.693147180559945*b126 =L= 0;

e165..    x34 - x35 - 0.693147180559945*b127 =L= 0;

e166..    x35 - x36 - 0.693147180559945*b128 =L= 0;

e167..    x7 - x8 + 0.693147180559945*b104 =G= 0;

e168..    x8 - x9 + 0.693147180559945*b105 =G= 0;

e169..    x9 - x10 + 0.693147180559945*b106 =G= 0;

e170..    x10 - x11 + 0.693147180559945*b107 =G= 0;

e171..    x11 - x12 + 0.693147180559945*b108 =G= 0;

e172..    x13 - x14 + 0.693147180559945*b109 =G= 0;

e173..    x14 - x15 + 0.693147180559945*b110 =G= 0;

e174..    x15 - x16 + 0.693147180559945*b111 =G= 0;

e175..    x16 - x17 + 0.693147180559945*b112 =G= 0;

e176..    x17 - x18 + 0.693147180559945*b113 =G= 0;

e177..    x19 - x20 + 0.693147180559945*b114 =G= 0;

e178..    x20 - x21 + 0.693147180559945*b115 =G= 0;

e179..    x21 - x22 + 0.693147180559945*b116 =G= 0;

e180..    x22 - x23 + 0.693147180559945*b117 =G= 0;

e181..    x23 - x24 + 0.693147180559945*b118 =G= 0;

e182..    x25 - x26 + 0.693147180559945*b119 =G= 0;

e183..    x26 - x27 + 0.693147180559945*b120 =G= 0;

e184..    x27 - x28 + 0.693147180559945*b121 =G= 0;

e185..    x28 - x29 + 0.693147180559945*b122 =G= 0;

e186..    x29 - x30 + 0.693147180559945*b123 =G= 0;

e187..    x31 - x32 + 0.693147180559945*b124 =G= 0;

e188..    x32 - x33 + 0.693147180559945*b125 =G= 0;

e189..    x33 - x34 + 0.693147180559945*b126 =G= 0;

e190..    x34 - x35 + 0.693147180559945*b127 =G= 0;

e191..    x35 - x36 + 0.693147180559945*b128 =G= 0;

e192.. -(250*(exp(0.6*x1 + x37 + x43) + exp(0.6*x2 + x38 + x44) + exp(0.6*x3 + 
       x39 + x45) + exp(0.6*x4 + x40 + x46) + exp(0.6*x5 + x41 + x47) + exp(0.6
       *x6 + x42 + x48)) + 150*exp(0.5*x50)) + objvar =E= 0;

* set non-default bounds
x1.lo = 5.7037824746562; x1.up = 8.1605182474775;
x2.lo = 5.7037824746562; x2.up = 8.1605182474775;
x3.lo = 5.7037824746562; x3.up = 8.1605182474775;
x4.lo = 5.7037824746562; x4.up = 8.1605182474775;
x5.lo = 5.7037824746562; x5.up = 8.1605182474775;
x6.lo = 5.7037824746562; x6.up = 8.1605182474775;
x7.lo = 4.45966260231685; x7.up = 6.09365548800453;
x8.lo = 4.45966260231685; x8.up = 6.09365548800453;
x9.lo = 4.45966260231685; x9.up = 6.09365548800453;
x10.lo = 4.45966260231685; x10.up = 6.09365548800453;
x11.lo = 4.45966260231685; x11.up = 6.09365548800453;
x12.lo = 4.45966260231685; x12.up = 6.09365548800453;
x13.lo = 3.74950407593037; x13.up = 6.93674281585539;
x14.lo = 3.74950407593037; x14.up = 6.93674281585539;
x15.lo = 3.74950407593037; x15.up = 6.93674281585539;
x16.lo = 3.74950407593037; x16.up = 6.93674281585539;
x17.lo = 3.74950407593037; x17.up = 6.93674281585539;
x18.lo = 3.74950407593037; x18.up = 6.93674281585539;
x19.lo = 4.49144142065975; x19.up = 6.87958440201544;
x20.lo = 4.49144142065975; x20.up = 6.87958440201544;
x21.lo = 4.49144142065975; x21.up = 6.87958440201544;
x22.lo = 4.49144142065975; x22.up = 6.87958440201544;
x23.lo = 4.49144142065975; x23.up = 6.87958440201544;
x24.lo = 4.49144142065975; x24.up = 6.87958440201544;
x25.lo = 3.14988295338125; x25.up = 6.61295573876149;
x26.lo = 3.14988295338125; x26.up = 6.61295573876149;
x27.lo = 3.14988295338125; x27.up = 6.61295573876149;
x28.lo = 3.14988295338125; x28.up = 6.61295573876149;
x29.lo = 3.14988295338125; x29.up = 6.61295573876149;
x30.lo = 3.14988295338125; x30.up = 6.61295573876149;
x31.lo = 3.04452243772342; x31.up = 6.65644085070123;
x32.lo = 3.04452243772342; x32.up = 6.65644085070123;
x33.lo = 3.04452243772342; x33.up = 6.65644085070123;
x34.lo = 3.04452243772342; x34.up = 6.65644085070123;
x35.lo = 3.04452243772342; x35.up = 6.65644085070123;
x36.lo = 3.04452243772342; x36.up = 6.65644085070123;
x37.up = 1.38629436111989;
x38.up = 1.38629436111989;
x39.up = 1.38629436111989;
x40.up = 1.38629436111989;
x41.up = 1.38629436111989;
x42.up = 1.38629436111989;
x43.up = 1.38629436111989;
x44.up = 1.38629436111989;
x45.up = 1.38629436111989;
x46.up = 1.38629436111989;
x47.up = 1.38629436111989;
x48.up = 1.38629436111989;
x50.lo = 4.60517018598809; x50.up = 9.61580548008435;
x51.up = 100;
x52.up = 100;
x53.up = 100;
x54.up = 100;
x55.up = 100;

* set non-default levels
x7.l = 5.27665904516069;
x8.l = 5.27665904516069;
x9.l = 5.27665904516069;
x10.l = 5.27665904516069;
x11.l = 5.27665904516069;
x12.l = 5.27665904516069;
x13.l = 5.34312344589288;
x14.l = 5.34312344589288;
x15.l = 5.34312344589288;
x16.l = 5.34312344589288;
x17.l = 5.34312344589288;
x18.l = 5.34312344589288;
x19.l = 5.68551291133759;
x20.l = 5.68551291133759;
x21.l = 5.68551291133759;
x22.l = 5.68551291133759;
x23.l = 5.68551291133759;
x24.l = 5.68551291133759;
x25.l = 4.88141934607137;
x26.l = 4.88141934607137;
x27.l = 4.88141934607137;
x28.l = 4.88141934607137;
x29.l = 4.88141934607137;
x30.l = 4.88141934607137;
x31.l = 4.85048164421233;
x32.l = 4.85048164421233;
x33.l = 4.85048164421233;
x34.l = 4.85048164421233;
x35.l = 4.85048164421233;
x36.l = 4.85048164421233;
x43.l = 0.693147180559945;
x44.l = 0.693147180559945;
x45.l = 0.693147180559945;
x46.l = 0.693147180559945;
x47.l = 0.693147180559945;
x48.l = 0.693147180559945;
x50.l = 7.11048783303622;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-10-14 Git hash: 2be6d7c0
Imprint / Privacy Policy / License: CC-BY 4.0