MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex1264
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 8.60000000 (ANTIGONE) 8.60000000 (BARON) 8.60000000 (COUENNE) 8.60000000 (GUROBI) 8.60000000 (LINDO) 8.60000000 (SCIP) 8.10000000 (SHOT) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Harjunkoski, Iiro, Westerlund, Tapio, Pörn, Ray, and Skrifvars, Hans, Different Transformations for Solving Non-Convex Trim Loss Problems by MINLP, European Journal of Operational Research, 105:3, 1998, 594-603. |
| Sourceⓘ | Test Problem ex12.6.4 of Chapter 12 of Floudas e.a. handbook |
| Applicationⓘ | Trim loss minimization problem |
| Added to libraryⓘ | 01 May 2001 |
| Problem typeⓘ | MBQCP |
| #Variablesⓘ | 88 |
| #Binary Variablesⓘ | 68 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 20 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 8 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 55 |
| #Linear Constraintsⓘ | 51 |
| #Quadratic Constraintsⓘ | 4 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 228 |
| #Nonlinear Nonzeros in Jacobianⓘ | 32 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 32 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 4 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
| Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e-01 |
| Maximal coefficientⓘ | 1.9000e+03 |
| Infeasibility of initial pointⓘ | 12 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 56 21 5 30 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 89 21 68 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 237 205 32 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,x69,x70
,x71,x72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
,b88,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x69
,x70,x71,x72;
Binary Variables b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31
,b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48
,b49,b50,b51,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65
,b66,b67,b68,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86
,b87,b88;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56;
e1.. - 0.1*b65 - 0.2*b66 - 0.3*b67 - 0.4*b68 - x69 - x70 - x71 - x72 + objvar
=E= 0;
e2.. x69*x1 + x70*x2 + x71*x3 + x72*x4 =G= 9;
e3.. x69*x5 + x70*x6 + x71*x7 + x72*x8 =G= 7;
e4.. x69*x9 + x70*x10 + x71*x11 + x72*x12 =G= 12;
e5.. x69*x13 + x70*x14 + x71*x15 + x72*x16 =G= 11;
e6.. - 330*x1 - 360*x5 - 385*x9 - 415*x13 + 1700*b65 =L= 0;
e7.. - 330*x2 - 360*x6 - 385*x10 - 415*x14 + 1700*b66 =L= 0;
e8.. - 330*x3 - 360*x7 - 385*x11 - 415*x15 + 1700*b67 =L= 0;
e9.. - 330*x4 - 360*x8 - 385*x12 - 415*x16 + 1700*b68 =L= 0;
e10.. 330*x1 + 360*x5 + 385*x9 + 415*x13 - 1900*b65 =L= 0;
e11.. 330*x2 + 360*x6 + 385*x10 + 415*x14 - 1900*b66 =L= 0;
e12.. 330*x3 + 360*x7 + 385*x11 + 415*x15 - 1900*b67 =L= 0;
e13.. 330*x4 + 360*x8 + 385*x12 + 415*x16 - 1900*b68 =L= 0;
e14.. - x1 - x5 - x9 - x13 + b65 =L= 0;
e15.. - x2 - x6 - x10 - x14 + b66 =L= 0;
e16.. - x3 - x7 - x11 - x15 + b67 =L= 0;
e17.. - x4 - x8 - x12 - x16 + b68 =L= 0;
e18.. x1 + x5 + x9 + x13 - 5*b65 =L= 0;
e19.. x2 + x6 + x10 + x14 - 5*b66 =L= 0;
e20.. x3 + x7 + x11 + x15 - 5*b67 =L= 0;
e21.. x4 + x8 + x12 + x16 - 5*b68 =L= 0;
e22.. b65 - x69 =L= 0;
e23.. b66 - x70 =L= 0;
e24.. b67 - x71 =L= 0;
e25.. b68 - x72 =L= 0;
e26.. - 15*b65 + x69 =L= 0;
e27.. - 12*b66 + x70 =L= 0;
e28.. - 9*b67 + x71 =L= 0;
e29.. - 6*b68 + x72 =L= 0;
e30.. x69 + x70 + x71 + x72 =G= 8;
e31.. - b65 + b66 =L= 0;
e32.. - b66 + b67 =L= 0;
e33.. - b67 + b68 =L= 0;
e34.. - x69 + x70 =L= 0;
e35.. - x70 + x71 =L= 0;
e36.. - x71 + x72 =L= 0;
e37.. x1 - b17 - 2*b18 - 4*b19 =E= 0;
e38.. x2 - b20 - 2*b21 - 4*b22 =E= 0;
e39.. x3 - b23 - 2*b24 - 4*b25 =E= 0;
e40.. x4 - b26 - 2*b27 - 4*b28 =E= 0;
e41.. x5 - b29 - 2*b30 - 4*b31 =E= 0;
e42.. x6 - b32 - 2*b33 - 4*b34 =E= 0;
e43.. x7 - b35 - 2*b36 - 4*b37 =E= 0;
e44.. x8 - b38 - 2*b39 - 4*b40 =E= 0;
e45.. x9 - b41 - 2*b42 - 4*b43 =E= 0;
e46.. x10 - b44 - 2*b45 - 4*b46 =E= 0;
e47.. x11 - b47 - 2*b48 - 4*b49 =E= 0;
e48.. x12 - b50 - 2*b51 - 4*b52 =E= 0;
e49.. x13 - b53 - 2*b54 - 4*b55 =E= 0;
e50.. x14 - b56 - 2*b57 - 4*b58 =E= 0;
e51.. x15 - b59 - 2*b60 - 4*b61 =E= 0;
e52.. x16 - b62 - 2*b63 - 4*b64 =E= 0;
e53.. x69 - b73 - 2*b74 - 4*b75 - 8*b76 =E= 0;
e54.. x70 - b77 - 2*b78 - 4*b79 - 8*b80 =E= 0;
e55.. x71 - b81 - 2*b82 - 4*b83 - 8*b84 =E= 0;
e56.. x72 - b85 - 2*b86 - 4*b87 - 8*b88 =E= 0;
* set non-default bounds
x1.up = 5;
x2.up = 5;
x3.up = 5;
x4.up = 5;
x5.up = 5;
x6.up = 5;
x7.up = 5;
x8.up = 5;
x9.up = 5;
x10.up = 5;
x11.up = 5;
x12.up = 5;
x13.up = 5;
x14.up = 5;
x15.up = 5;
x16.up = 5;
x69.up = 15;
x70.up = 12;
x71.up = 9;
x72.up = 6;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

