MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex14_2_6
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
Sourceⓘ | Test Problem ex14.2.6 of Chapter 14 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 5 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 7 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 6 |
Operands in Gen. Nonlin. Functionsⓘ | div log |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 33 |
#Nonlinear Nonzeros in Jacobianⓘ | 24 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0794e-03 |
Maximal coefficientⓘ | 3.8164e+03 |
Infeasibility of initial pointⓘ | 0.000554 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 8 2 0 6 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 6 6 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 35 11 24 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,objvar,x6; Positive Variables x6; Equations e1,e2,e3,e4,e5,e6,e7,e8; e1.. objvar - x6 =E= 0; e2.. 8.85*log(2.11*x1 + 3.19*x2 + 0.92*x3) - 9.85*log(1.97*x1 + 2.4*x2 + 1.4*x3 ) - (3.7136*x2 - 0.865100000000001*x1 - 4.8952*x3)/(2.11*x1 + 3.19*x2 + 0.92*x3) - 0.92*log(0.92*x1 + 0.120222883700913*x2 + 0.31896673275906*x3) + 0.92*log(0.92*x1 + 2.4*x2 + x3) - 0.92*(0.92*x1/(0.92*x1 + 0.120222883700913*x2 + 0.31896673275906*x3) + 3.53361528312402*x2/( 1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + 1.21383720135623*x3 /(1.11673022524774*x1 + 0.00499065620537111*x2 + x3)) - 3803.98/(231.47 + x4) - x6 =L= -12.8590236275375; e3.. 11*log(2.11*x1 + 3.19*x2 + 0.92*x3) - 12*log(1.97*x1 + 2.4*x2 + 1.4*x3) - (5.6144*x2 - 1.3079*x1 - 7.4008*x3)/(2.11*x1 + 3.19*x2 + 0.92*x3) - 2.4* log(1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + 2.4*log(0.92*x1 + 2.4*x2 + x3) - 2.4*(0.0460854387520165*x1/(0.92*x1 + 0.120222883700913* x2 + 0.31896673275906*x3) + 2.4*x2/(1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + 0.0020794400855713*x3/(1.11673022524774*x1 + 0.00499065620537111*x2 + x3)) - 2788.51/(220.79 + x4) - x6 =L= -11.1728763302021; e4.. 6*log(2.11*x1 + 3.19*x2 + 0.92*x3) - 7*log(1.97*x1 + 2.4*x2 + 1.4*x3) - ( 1.6192*x2 - 0.3772*x1 - 2.1344*x3)/(2.11*x1 + 3.19*x2 + 0.92*x3) - log( 1.11673022524774*x1 + 0.00499065620537111*x2 + x3) + log(0.92*x1 + 2.4*x2 + x3) - (0.293449394138336*x1/(0.92*x1 + 0.120222883700913*x2 + 0.31896673275906*x3) + 1.69874317415203*x2/(1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + x3/(1.11673022524774*x1 + 0.00499065620537111* x2 + x3)) - 3816.44/(227.02 + x4) - x6 =L= -13.2058768767024; e5.. 9.85*log(1.97*x1 + 2.4*x2 + 1.4*x3) - 8.85*log(2.11*x1 + 3.19*x2 + 0.92*x3 ) + (3.7136*x2 - 0.865100000000001*x1 - 4.8952*x3)/(2.11*x1 + 3.19*x2 + 0.92*x3) + 0.92*log(0.92*x1 + 0.120222883700913*x2 + 0.31896673275906*x3) - 0.92*log(0.92*x1 + 2.4*x2 + x3) + 0.92*(0.92*x1/(0.92*x1 + 0.120222883700913*x2 + 0.31896673275906*x3) + 3.53361528312402*x2/( 1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + 1.21383720135623*x3 /(1.11673022524774*x1 + 0.00499065620537111*x2 + x3)) + 3803.98/(231.47 + x4) - x6 =L= 12.8590236275375; e6.. 12*log(1.97*x1 + 2.4*x2 + 1.4*x3) - 11*log(2.11*x1 + 3.19*x2 + 0.92*x3) + (5.6144*x2 - 1.3079*x1 - 7.4008*x3)/(2.11*x1 + 3.19*x2 + 0.92*x3) + 2.4* log(1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) - 2.4*log(0.92*x1 + 2.4*x2 + x3) + 2.4*(0.0460854387520165*x1/(0.92*x1 + 0.120222883700913* x2 + 0.31896673275906*x3) + 2.4*x2/(1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + 0.0020794400855713*x3/(1.11673022524774*x1 + 0.00499065620537111*x2 + x3)) + 2788.51/(220.79 + x4) - x6 =L= 11.1728763302021; e7.. 7*log(1.97*x1 + 2.4*x2 + 1.4*x3) - 6*log(2.11*x1 + 3.19*x2 + 0.92*x3) + ( 1.6192*x2 - 0.3772*x1 - 2.1344*x3)/(2.11*x1 + 3.19*x2 + 0.92*x3) + log( 1.11673022524774*x1 + 0.00499065620537111*x2 + x3) - log(0.92*x1 + 2.4*x2 + x3) + 0.293449394138336*x1/(0.92*x1 + 0.120222883700913*x2 + 0.31896673275906*x3) + 1.69874317415203*x2/(1.35455252519754*x1 + 2.4*x2 + 0.707809655896681*x3) + x3/(1.11673022524774*x1 + 0.00499065620537111* x2 + x3) + 3816.44/(227.02 + x4) - x6 =L= 13.2058768767024; e8.. x1 + x2 + x3 =E= 1; * set non-default bounds x1.lo = 1E-6; x1.up = 1; x2.lo = 1E-6; x2.up = 1; x3.lo = 1E-6; x3.up = 1; x4.lo = 40; x4.up = 90; * set non-default levels x1.l = 0.013; x2.l = 0.604; x3.l = 0.383; x4.l = 61.583; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f