MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex2_1_2
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -213.00000020 (ANTIGONE) -213.00000030 (BARON) -213.00000000 (COUENNE) -213.00000000 (CPLEX) -213.00000000 (GUROBI) -213.00000000 (LINDO) -213.00000000 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. |
| Sourceⓘ | Test Problem ex2.1.2 of Chapter 2 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | QP |
| #Variablesⓘ | 6 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 5 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | concave |
| #Nonzeros in Objectiveⓘ | 6 |
| #Nonlinear Nonzeros in Objectiveⓘ | 5 |
| #Constraintsⓘ | 2 |
| #Linear Constraintsⓘ | 2 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 8 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 5 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
| #Blocks in Hessian of Lagrangianⓘ | 5 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.0000e-01 |
| Maximal coefficientⓘ | 1.0500e+01 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 3 1 0 2 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 7 7 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 15 10 5 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,objvar;
Positive Variables x1,x2,x3,x4,x5,x6;
Equations e1,e2,e3;
e1.. -(-0.5*(x1*x1 + x2*x2 + x3*x3 + x4*x4 + x5*x5) - 10.5*x1 - 7.5*x2 - 3.5*x3
- 2.5*x4 - 1.5*x5) + 10*x6 + objvar =E= 0;
e2.. 6*x1 + 3*x2 + 3*x3 + 2*x4 + x5 =L= 6.5;
e3.. 10*x1 + 10*x3 + x6 =L= 20;
* set non-default bounds
x1.up = 1;
x2.up = 1;
x3.up = 1;
x4.up = 1;
x5.up = 1;
* set non-default levels
x2.l = 1;
x4.l = 1;
x5.l = 1;
x6.l = 20;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

