MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex3_1_3
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -310.00000030 (ANTIGONE) -310.00010110 (BARON) -310.00000010 (COUENNE) -310.00000000 (GUROBI) -310.00000000 (LINDO) -310.00003740 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Hesse, R, A Heuristic Search Procedure for Estimating a Global Solution of Nonconvex Programming Problems, Operations Research, 21:6, 1973, 1267--1280. |
Sourceⓘ | Test Problem ex3.1.3 of Chapter 3 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCQP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | concave |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 6 |
#Linear Constraintsⓘ | 4 |
#Quadratic Constraintsⓘ | 2 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | concave |
#Nonzeros in Jacobianⓘ | 12 |
#Nonlinear Nonzeros in Jacobianⓘ | 2 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.5000e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 7 1 3 3 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 19 11 8 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,objvar; Positive Variables x1,x2,x4,x6; Equations e1,e2,e3,e4,e5,e6,e7; e1.. -(-25*sqr((-2) + x1) - sqr((-2) + x2) - sqr((-1) + x3) - sqr((-4) + x4) - sqr((-1) + x5) - sqr((-4) + x6)) + objvar =E= 0; e2.. sqr((-3) + x3) + x4 =G= 4; e3.. sqr((-3) + x5) + x6 =G= 4; e4.. x1 - 3*x2 =L= 2; e5.. - x1 + x2 =L= 2; e6.. x1 + x2 =L= 6; e7.. x1 + x2 =G= 2; * set non-default bounds x3.lo = 1; x3.up = 5; x4.up = 6; x5.lo = 1; x5.up = 5; x6.up = 10; * set non-default levels x1.l = 5; x2.l = 1; x3.l = 5; x5.l = 5; x6.l = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f