MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex5_4_3
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 4845.46200000 (ANTIGONE) 4845.46199600 (BARON) 4845.46200500 (COUENNE) 4845.46200400 (LINDO) 4845.46200500 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Visweswaran, V and Floudas, C A, Computational Results for an Efficient Implementation of the GOP Algorithm and its Variants. Chapter 4 in Grossmann, I E, Ed, Global Optimization in Engineering Design, Kluwer Books, 1996, 111-153. |
Sourceⓘ | Test Problem ex5.4.3 of Chapter 5 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 16 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 12 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 4 |
#Nonlinear Nonzeros in Objectiveⓘ | 4 |
#Constraintsⓘ | 13 |
#Linear Constraintsⓘ | 9 |
#Quadratic Constraintsⓘ | 4 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div mul vcpower |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 38 |
#Nonlinear Nonzeros in Jacobianⓘ | 14 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
#Blocks in Hessian of Lagrangianⓘ | 4 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.3333e-02 |
Maximal coefficientⓘ | 1.3000e+03 |
Infeasibility of initial pointⓘ | 1000 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 14 14 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 17 17 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 43 25 18 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,objvar; Positive Variables x5,x6,x7,x8,x9,x10,x11,x12; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14; e1.. x5 + x9 =E= 10; e2.. x5 - x6 + x11 =E= 0; e3.. x7 + x9 - x10 =E= 0; e4.. - x6 + x7 + x8 =E= 0; e5.. - x10 + x11 + x12 =E= 0; e6.. x16*x11 - x13*x6 + 150*x5 =E= 0; e7.. x15*x7 - x14*x10 + 150*x9 =E= 0; e8.. x6*x15 - x6*x13 =E= 1000; e9.. x10*x16 - x10*x14 =E= 600; e10.. x1 + x15 =E= 500; e11.. x2 + x13 =E= 250; e12.. x3 + x16 =E= 350; e13.. x4 + x14 =E= 200; e14.. -(1300*(1000/(0.0333333333333333*x1*x2 + 0.166666666666667*x1 + 0.166666666666667*x2))**0.6 + 1300*(600/(0.0333333333333333*x3*x4 + 0.166666666666667*x3 + 0.166666666666667*x4))**0.6) + objvar =E= 0; * set non-default bounds x1.lo = 10; x1.up = 350; x2.lo = 10; x2.up = 350; x3.lo = 10; x3.up = 200; x4.lo = 10; x4.up = 200; x5.up = 10; x6.up = 10; x7.up = 10; x8.up = 10; x9.up = 10; x10.up = 10; x11.up = 10; x12.up = 10; x13.lo = 150; x13.up = 310; x14.lo = 150; x14.up = 310; x15.lo = 150; x15.up = 310; x16.lo = 150; x16.up = 310; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f