MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex6_2_12

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
0.28919475 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
0.28919407 (ANTIGONE)
0.28919357 (BARON)
0.28906627 (COUENNE)
0.28919052 (LINDO)
0.28916337 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23.
Source Test Problem ex6.2.12 of Chapter 6 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type NLP
#Variables 4
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 4
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature nonconvex
#Nonzeros in Objective 4
#Nonlinear Nonzeros in Objective 4
#Constraints 2
#Linear Constraints 2
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div log mul
Constraints curvature linear
#Nonzeros in Jacobian 4
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 8
#Nonzeros in Diagonal of Hessian of Lagrangian 4
#Blocks in Hessian of Lagrangian 2
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 6.9623e-02
Maximal coefficient 8.9606e+00
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          3        3        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          5        5        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          9        5        4        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3,x4,x5;

Equations  e1,e2,e3;


e1.. -(log(x2/(8*x2 + x4))*x2 + log(x4/(8*x2 + x4))*x4 + 0.0696225416798359*x2
      + 0.752006*x4 + log(8*x2 + 1.6*x4)*(8*x2 + 1.6*x4) + 5*log(x2/(
     5.00000397494442*x2 + 0.480353357956269*x4))*x2 + 3*log(x2/(
     8.96062592375197*x2 + 1.13841069150863*x4))*x2 + 1.6*log(x4/(
     1.69889877049372*x2 + 1.6*x4))*x4 + log(x3/(8*x3 + x5))*x3 + log(x5/(8*x3
      + x5))*x5 + 0.0696225416798359*x3 + 0.752006*x5 + log(8*x3 + 1.6*x5)*(8*
     x3 + 1.6*x5) + 5*log(x3/(5.00000397494442*x3 + 0.480353357956269*x5))*x3
      + 3*log(x3/(8.96062592375197*x3 + 1.13841069150863*x5))*x3 + 1.6*log(x5/(
     1.69889877049372*x3 + 1.6*x5))*x5 - 8*log(x2)*x2 - 1.6*log(x4)*x4 - 8*log(
     x3)*x3 - 1.6*log(x5)*x5) + objvar =E= 0;

e2..    x2 + x3 =E= 0.5;

e3..    x4 + x5 =E= 0.5;

* set non-default bounds
x2.lo = 1E-7; x2.up = 0.5;
x3.lo = 1E-7; x3.up = 0.5;
x4.lo = 1E-7; x4.up = 0.5;
x5.lo = 1E-7; x5.up = 0.5;

* set non-default levels
x2.l = 0.4994;
x3.l = 0.0006;
x4.l = 0.1179;
x5.l = 0.3821;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0