MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_13
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -0.22496155 (ANTIGONE) -0.21623124 (BARON) -0.28177888 (COUENNE) -0.21626823 (GUROBI) -0.21687624 (LINDO) -0.25884597 (SCIP) -220.84725550 (SHOT) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. Heidemann, R and Mandhane, J, Some Properties of the NRTL Equation in Correlating Liquid-Liquid Equilibrium Data, Chemical Engineering Science, 28:5, 1973, 1213-1221. |
| Sourceⓘ | Test Problem ex6.2.13 of Chapter 6 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 6 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 6 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | nonconcave |
| #Nonzeros in Objectiveⓘ | 6 |
| #Nonlinear Nonzeros in Objectiveⓘ | 6 |
| #Constraintsⓘ | 3 |
| #Linear Constraintsⓘ | 3 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | div log mul |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 6 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 18 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
| #Blocks in Hessian of Lagrangianⓘ | 2 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 4.8035e-01 |
| Maximal coefficientⓘ | 6.0000e+00 |
| Infeasibility of initial pointⓘ | 1.11e-16 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 4 4 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 7 7 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 13 7 6 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7;
Equations e1,e2,e3,e4;
e1.. -(log(x2/(3*x2 + 6*x4 + x6))*x2 + log(x4/(3*x2 + 6*x4 + x6))*x4 + log(x6/(
3*x2 + 6*x4 + x6))*x6 - 0.80323071133189*x2 + 1.79175946922805*x4 +
0.752006*x6 + log(3*x2 + 6*x4 + 1.6*x6)*(3*x2 + 6*x4 + 1.6*x6) + 2*log(x2/
(2.00000019368913*x2 + 4.64593*x4 + 0.480353*x6))*x2 + log(x2/(
1.00772874182154*x2 + 0.724703350369523*x4 + 0.947722362492017*x6))*x2 + 6
*log(x4/(3.36359157977228*x2 + 6*x4 + 1.13841069150863*x6))*x4 + 1.6*log(
x6/(1.6359356134845*x2 + 3.39220996773471*x4 + 1.6*x6))*x6 + log(x3/(3*x3
+ 6*x5 + x7))*x3 + log(x5/(3*x3 + 6*x5 + x7))*x5 + log(x7/(3*x3 + 6*x5 +
x7))*x7 - 0.80323071133189*x3 + 1.79175946922805*x5 + 0.752006*x7 + log(3*
x3 + 6*x5 + 1.6*x7)*(3*x3 + 6*x5 + 1.6*x7) + 2*log(x3/(2.00000019368913*x3
+ 4.64593*x5 + 0.480353*x7))*x3 + log(x3/(1.00772874182154*x3 +
0.724703350369523*x5 + 0.947722362492017*x7))*x3 + 6*log(x5/(
3.36359157977228*x3 + 6*x5 + 1.13841069150863*x7))*x5 + 1.6*log(x7/(
1.6359356134845*x3 + 3.39220996773471*x5 + 1.6*x7))*x7 - 3*log(x2)*x2 - 6*
log(x4)*x4 - 1.6*log(x6)*x6 - 3*log(x3)*x3 - 6*log(x5)*x5 - 1.6*log(x7)*x7
) + objvar =E= 0;
e2.. x2 + x3 =E= 0.08;
e3.. x4 + x5 =E= 0.3;
e4.. x6 + x7 =E= 0.62;
* set non-default bounds
x2.lo = 1E-7; x2.up = 0.08;
x3.lo = 1E-7; x3.up = 0.08;
x4.lo = 1E-7; x4.up = 0.3;
x5.lo = 1E-7; x5.up = 0.3;
x6.lo = 1E-7; x6.up = 0.62;
x7.lo = 1E-7; x7.up = 0.62;
* set non-default levels
x2.l = 0.0739;
x3.l = 0.0061;
x4.l = 0.2773;
x5.l = 0.0227;
x6.l = 0.5731;
x7.l = 0.0469;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

