MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex6_2_5
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -364.11622330 (ANTIGONE) -111.42017130 (BARON) -477.63328540 (COUENNE) -803.77443220 (LINDO) -492.44034070 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. McDonald, C M and Floudas, C A, GLOPEQ: A New Computational Tool for the Phase and Chemical Equilibrium Problem, Computers and Chemical Engineering, 21:1, 1997, 1-23. |
Sourceⓘ | Test Problem ex6.2.5 of Chapter 6 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 9 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 9 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 9 |
#Nonlinear Nonzeros in Objectiveⓘ | 9 |
#Constraintsⓘ | 3 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div log mul |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 9 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 27 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 9 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 7.2992e-03 |
Maximal coefficientⓘ | 4.7512e+01 |
Infeasibility of initial pointⓘ | 13.36 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 4 4 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 10 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 19 10 9 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10; Equations e1,e2,e3,e4; e1.. -((0.156969560191053 + log(x4/(x4 + x7 + x10)))*x4 + (0.156969560191053 + log(x7/(x4 + x7 + x10)))*x7 + (0.156969560191053 + log(x10/(x4 + x7 + x10) ))*x10 + log(3.9235*x2 + 6.0909*x5 + 0.92*x8)*(26.9071667605344*x2 + 41.7710875549227*x5 + 6.30931398488382*x8) + 0.113370955614741*x2 - 2.43897680885457*x5 + 2.8555953099828*x8 + 9.58716676053442*log(x2)*x2 + 16.9310875549227*log(x5)*x5 + 0.309313984883821*log(x8)*x8 - 9.58716676053442*log(3.9235*x2 + 6.0909*x5 + 0.92*x8)*x2 - 16.9310875549227*log(3.9235*x2 + 6.0909*x5 + 0.92*x8)*x5 - 0.309313984883821*log(3.9235*x2 + 6.0909*x5 + 0.92*x8)*x8 + 18.32*log(x2)* x2 + 25.84*log(x5)*x5 + 7*log(x8)*x8 - 18.32*log(3.664*x2 + 5.168*x5 + 1.4 *x8)*x2 - 25.84*log(3.664*x2 + 5.168*x5 + 1.4*x8)*x5 - 7*log(3.664*x2 + 5.168*x5 + 1.4*x8)*x8 + log(4.0643*x2 + 5.7409*x5 + 1.6741*x8)*(4.0643*x2 + 5.7409*x5 + 1.6741*x8) + 4.0643*log(x2)*x2 + 5.7409*log(x5)*x5 + 1.6741 *log(x8)*x8 - 4.0643*log(4.0643*x2 + 3.22644664511275*x5 + 1.44980651607875*x8)*x2 - 5.7409*log(5.31147575751424*x2 + 5.7409*x5 + 0.00729924451284409*x8)*x5 - 1.6741*log(2.25846661774355*x2 + 3.70876916588753*x5 + 1.6741*x8)*x8 + log(3.9235*x3 + 6.0909*x6 + 0.92*x9) *(26.9071667605344*x3 + 41.7710875549227*x6 + 6.30931398488382*x9) + 0.113370955614741*x3 - 2.43897680885457*x6 + 2.8555953099828*x9 + 9.58716676053442*log(x3)*x3 + 16.9310875549227*log(x6)*x6 + 0.309313984883821*log(x9)*x9 - 9.58716676053442*log(3.9235*x3 + 6.0909*x6 + 0.92*x9)*x3 - 16.9310875549227*log(3.9235*x3 + 6.0909*x6 + 0.92*x9)*x6 - 0.309313984883821*log(3.9235*x3 + 6.0909*x6 + 0.92*x9)*x9 + 18.32*log( x3)*x3 + 25.84*log(x6)*x6 + 7*log(x9)*x9 - 18.32*log(3.664*x3 + 5.168*x6 + 1.4*x9)*x3 - 25.84*log(3.664*x3 + 5.168*x6 + 1.4*x9)*x6 - 7*log(3.664* x3 + 5.168*x6 + 1.4*x9)*x9 + log(4.0643*x3 + 5.7409*x6 + 1.6741*x9)*( 4.0643*x3 + 5.7409*x6 + 1.6741*x9) + 4.0643*log(x3)*x3 + 5.7409*log(x6)*x6 + 1.6741*log(x9)*x9 - 4.0643*log(4.0643*x3 + 3.22644664511275*x6 + 1.44980651607875*x9)*x3 - 5.7409*log(5.31147575751424*x3 + 5.7409*x6 + 0.00729924451284409*x9)*x6 - 1.6741*log(2.25846661774355*x3 + 3.70876916588753*x6 + 1.6741*x9)*x9 - 0.3658348*x2 - 0.3658348*x3 - 0.9825555*x5 - 0.9825555*x6 - 0.3663657*x8 - 0.3663657*x9 - 30.9714667605344*log(x2)*x2 - 47.5119875549227*log(x5)*x5 - 7.98341398488382*log(x8)*x8 - 30.9714667605344*log(x3)*x3 - 47.5119875549227*log(x6)*x6 - 7.98341398488382*log(x9)*x9) + objvar =E= 0; e2.. x2 + x3 + x4 =E= 40.30707; e3.. x5 + x6 + x7 =E= 5.14979; e4.. x8 + x9 + x10 =E= 54.54314; * set non-default bounds x2.lo = 1E-7; x2.up = 40.30707; x3.lo = 1E-7; x3.up = 40.30707; x4.lo = 1E-7; x4.up = 40.30707; x5.lo = 1E-7; x5.up = 5.14979; x6.lo = 1E-7; x6.up = 5.14979; x7.lo = 1E-7; x7.up = 5.14979; x8.lo = 1E-7; x8.up = 54.54314; x9.lo = 1E-7; x9.up = 54.54314; x10.lo = 1E-7; x10.up = 54.54314; * set non-default levels x2.l = 31.459; x3.l = 0.901998; x5.l = 3.10348; x6.l = 9.6E-6; x8.l = 26.1669; x9.l = 15.0141; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f