MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance ex7_2_1

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
1227.22607500 p1 ( gdx sol )
(infeas: 2e-10)
Other points (infeas > 1e-08)  
Dual Bounds
1227.22222100 (ANTIGONE)
1227.22566900 (BARON)
1225.42758000 (COUENNE)
1227.22585300 (LINDO)
1227.22607500 (SCIP)
References Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999.
Dembo, R S, A Set of Geometric Programming Test Problems and Their Solutions, Mathematical Programming, 10:1, 1976, 192-213.
Source Test Problem ex7.2.1 of Chapter 7 of Floudas e.a. handbook
Added to library 31 Jul 2001
Problem type NLP
#Variables 7
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 7
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature indefinite
#Nonzeros in Objective 5
#Nonlinear Nonzeros in Objective 4
#Constraints 14
#Linear Constraints 2
#Quadratic Constraints 2
#Polynomial Constraints 0
#Signomial Constraints 10
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 40
#Nonlinear Nonzeros in Jacobian 31
#Nonzeros in (Upper-Left) Hessian of Lagrangian 33
#Nonzeros in Diagonal of Hessian of Lagrangian 7
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 7
Maximal blocksize in Hessian of Lagrangian 7
Average blocksize in Hessian of Lagrangian 7.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.2245e-05
Maximal coefficient 4.8951e+05
Infeasibility of initial point 2.99
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         15        1        0       14        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          8        8        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         46       11       35        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,objvar;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15;


e1.. -(0.035*x1*x6 - 0.063*x3*x5 + 1.715*x1 + 4.0565*x3) - 10*x2 + objvar
      =E= 3000;

e2.. 0.0059553571*sqr(x6) + 0.88392857*x3/x1 - 0.1175625*x6 =L= 1;

e3.. 1.1088*x1/x3 + 0.1303533*x1/x3*x6 - 0.0066033*x1/x3*sqr(x6) =L= 1;

e4.. 0.00066173269*sqr(x6) - 0.019120592*x6 - 0.0056595559*x4 + 0.017239878*x5
      =L= 1;

e5.. 56.85075/x5 + 1.08702*x6/x5 + 0.32175*x4/x5 - 0.03762*sqr(x6)/x5 =L= 1;

e6.. 2462.3121*x2/x3/x4 - 25.125634*x2/x3 + 0.006198*x7 =L= 1;

e7.. 161.18996/x7 + 5000*x2/x3/x7 - 489510*x2/x3/x4/x7 =L= 1;

e8.. 44.333333/x5 + 0.33*x7/x5 =L= 1;

e9..    0.022556*x5 - 0.007595*x7 =L= 1;

e10..  - 0.0005*x1 + 0.00061*x3 =L= 1;

e11.. 0.819672*x1/x3 + 0.819672/x3 =L= 1;

e12.. 24500*x2/x3/x4 - 250*x2/x3 =L= 1;

e13.. 1.2244898e-5*x3/x2*x4 + 0.010204082*x4 =L= 1;

e14.. 6.25e-5*x1*x6 + 6.25e-5*x1 - 7.625E-5*x3 =L= 1;

e15.. 1.22*x3/x1 + 1/x1 - x6 =L= 1;

* set non-default bounds
x1.lo = 1500; x1.up = 2000;
x2.lo = 1; x2.up = 120;
x3.lo = 3000; x3.up = 3500;
x4.lo = 85; x4.up = 93;
x5.lo = 90; x5.up = 95;
x6.lo = 3; x6.up = 12;
x7.lo = 145; x7.up = 162;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0